-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlecture3.tex
217 lines (158 loc) · 6.56 KB
/
lecture3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
\section{Lecture 3: Quantum Bits and Quantum States} \label{sec:lecture3}
\dfn{Qubit}{A \textbf{qubit} \index{qubit} is the fundamental unit of quantum
information. Unlike a classical bit, which is either $0$ or $1$, a qubit
can exist in a \vocab{superposition} \index{superposition} of states:
\[
|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad \text{where }
\alpha, \beta \in \mathbb{C} \text{ and } ||\alpha||^2 + ||\beta||^2 = 1
\]
}
\vspace{0.3cm}
\noindent
Key features of qubits include: \index{qubit!properties@\textit{properties}}
\begin{itemize}
\ii \textbf{Superposition:} A qubit can exist simultaneously in multiple
basis states.
\ii \textbf{Complex Amplitudes:} Coefficients $\alpha$ and $\beta$ are
complex numbers carrying magnitude and phase information.
\ii \textbf{Interference:} Quantum states can interfere constructively or
destructively.
\ii \textbf{Entanglement:} Qubits can be correlated in ways that
classical bits cannot.
\end{itemize}
\subsection*{Classical Computing Paradigms} \index{classical computing}
Quantum computing introduces a fundamentally different computational model.
Here are some key paradigms in classical computing that quantum computing
challenges:
\begin{itemize}
\ii \textbf{Deterministic Computing:} Uses discrete states (0 or 1) with
predictable transitions.
\ii \textbf{Analog Computing:} Uses continuous values susceptible to
noise accumulation.
\ii \textbf{Probabilistic Computing:} Represents probabilistic mixtures
of states.
\end{itemize}
In contrast, for quantum computing:
\begin{itemize}
\item \textbf{Quantum Computing:} Allows coherent superposition with
complex amplitudes and quantum interference.
\end{itemize}
\dfn{Dirac Notation}{Quantum states are represented using \vocab{Dirac
notation} (bra-ket notation): \index{vector!Dirac notation}
\begin{itemize}
\ii \textbf{Ket:} \( |0\rangle, |1\rangle \) represent computational
basis states
\ii Computational basis vectors:
\[
|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad
|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
\ii General state: \( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle \)
\end{itemize}}
\dfn{Basis States}{Common qubit bases include:
\begin{itemize}
\ii \textbf{Computational Basis:} \( |0\rangle, |1\rangle \)
\index{universal bases!computational}
\ii \textbf{Hadamard Basis:}
\index{universal bases!Hadamard basis}
\[
|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \begin{bmatrix}
1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}
\]
\[
|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \begin{bmatrix}
1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}
\]
\ii \textbf{Phase/ Circular Polarization Basis:}
\index{universal bases!phase basis}
\[ |L\rangle = \ket{+i} = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle) \]
\[|R\rangle = \ket{-i} = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle) \]
\end{itemize}}
%%%%%%%%%%%
\subsection*{Bloch Sphere Representation}
\index{Bloch sphere}
\dfn{Bloch Sphere}{A geometric representation of a single qubit state:
\[ |\psi\rangle = \lt[\cos\left(\frac{\theta}{2}\right)|0\rangle +
e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle\rt]e^{i\gamma} \]
Where:
\begin{itemize}
\ii \( \theta \in [0,\pi] \) is the polar angle \index{Bloch sphere!polar angle}
\ii \( \phi \in [0, 2\pi) \) is the azimuthal angle \index{Bloch sphere!azimuthal angle}
\ii \( \gamma \) is a global phase, often omitted since it cannot be
represented on the Bloch sphere directly \index{Bloch sphere!global phase}
\end{itemize}}
\index{Bloch sphere!Cartesian coordinates conversion}
\aside{Bloch Sphere Conversion to Cartesian Coordinates:
\[ x = \sin\theta \cos\phi, \quad
y = \sin\theta \sin\phi, \quad
z = \cos\theta
\]
}
Rearranging the Bloch sphere formula, we obtain that $\theta$ and
$\phi$ can be expressed as:
\[
\theta = 2\arccos(\alpha_1), \quad \phi = -i
\ln\left(\frac{\alpha_2}{\sin\left(\frac{\theta}{2}\right)}\right)
\]
\ex{Example Bloch Sphere Representation}{
\text{For the state } \(\theta = \frac{\pi}{2}, \phi = 0\):
\bloch{90}{0}
}
\ex{Factoring Out the Global Phase}{
Let's say that we have the following quantum state vector $\ket{\psi}$:
\[
\begin{aligned}
\ket{\psi} & = \frac{1}{\sqrt{2}}\lt(i \zero + \one\rt) \\
& = \frac{i}{\sqrt{2}}\zero + \frac{1}{\sqrt{2}}\one \\
& = \underbrace{i}_{\text{global phase}}
\lt(\frac{1}{\sqrt{2}}\zero + \frac{1}{\sqrt{2}}\one\rt) \\
\end{aligned}
\]
}
\subsection*{Quantum Measurement} \index{quantum measurement}
When a qubit is measured:
\begin{itemize}
\ii The quantum state \textit{collapses} to an eigenstate
\ii Measurement probability depends on squared amplitude
\ii Computational basis measurement probabilities:
\[ P(0) = |\alpha|^2, \quad P(1) = |\beta|^2 \]
\ii Post-measurement state:
\[
\boxed{|\psi_{\text{new}}\rangle = \frac{|b\rangle \langle b | \psi
\rangle}{\sqrt{P(b)}}
}
\]
\end{itemize}
\ex{Measurement Example}{For the state \( |\psi\rangle =
\frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle \):
\begin{itemize}
\ii Probability of measuring \( |0\rangle \): \( P(0) = \frac{1}{3} \)
\ii Probability of measuring \( |1\rangle \): \( P(1) = \frac{2}{3} \)
\end{itemize}}
\qs{Orthonormality Check}{Verify the inner products of basis states:
\begin{align*}
\langle 0 | 1 \rangle &= 0 \\
\langle 0 | 0 \rangle &= 1 \\
\langle + | + \rangle &= 1 \\
\langle + | - \rangle &= 0
\end{align*}}
\sol{These relations hold due to the orthonormal nature of quantum basis
states.}
\nt{Quantum Bases and Their $\theta$ and $\phi$ Values:
\begin{itemize}
\item \textbf{Computational Basis:} \( \zero \rightarrow \theta = 0, \phi
= 0, \quad \one \rightarrow \theta = \pi, \phi = 0 \)
\index{universal bases!computational!angles@\textit{angles}}
\item \textbf{Hadamard Basis:} \( \ket{+} \rightarrow \theta =
\frac{\pi}{2}, \phi = 0, \quad \ket{-} \rightarrow \theta =
\frac{\pi}{2}, \phi = \pi \)
\index{universal bases!Hadamard basis!angles@\textit{angles}}
\item \textbf{Phase Basis:} \( \left|L\right\rangle = \ket{+i} \rightarrow
\theta = \frac{\pi}{2}, \phi = \frac{\pi}{2}, \quad \left|R\right\rangle
= \ket{-i} \rightarrow \theta = \frac{\pi}{2}, \phi = -\frac{\pi}{2} \)
\index{universal bases!phase basis!angles@\textit{angles}}
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of Lecture 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%