-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcheatsheet.tex
271 lines (238 loc) · 11 KB
/
cheatsheet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
\section{Cheatsheet}\label{sec:cheatsheet}
% Local formatting for the cheatsheet
\begingroup
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
\raggedright
\footnotesize
\makeatother
\begin{multicols}{3}
\section*{Linear Algebra Notation}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Bra-Ket}: Ket $|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, Bra $\langle\psi| = [\alpha^* \; \beta^*]$
\item \textbf{Inner Product}: $\langle\phi|\psi\rangle = \phi^\dagger\psi = \sum_i \phi_i^*\psi_i$
\item \textbf{Norm}: $\|\psi\|^2 = \langle\psi|\psi\rangle = \sum_i |\psi_i|^2$
\item \textbf{Outer Product}: $|\psi\rangle\langle\phi| = \begin{bmatrix} \psi_1\phi_1^* & \psi_1\phi_2^* \\ \psi_2\phi_1^* & \psi_2\phi_2^* \end{bmatrix}$
\item \textbf{Tensor Product}: $|\psi\rangle \otimes |\phi\rangle = \begin{bmatrix} \psi_1\phi_1 \\ \psi_1\phi_2 \\ \psi_2\phi_1 \\ \psi_2\phi_2 \end{bmatrix}$
\item \textbf{Matrix Mult}: $(AB)_{ij} = \sum_k A_{ik}B_{kj}$
\item \textbf{Unitary}: $U^\dagger U = UU^\dagger = I$, preserves norms and inner products
\item \textbf{Hermitian}: $H = H^\dagger$, eigenvalues are real
\item \textbf{Magnitude}: Real: $\|v\| = \sqrt{\sum_i v_i^2}$, Complex: $\|v\| = \sqrt{\sum_i |v_i|^2}$
\end{itemize}
\conceptbox{Important Property}{Tensor products are \textit{not commutative}: $A \otimes B \neq B \otimes A$ generally}
\section*{Qubit Representation}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Dirac Notation}: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $\alpha,\beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$
\item \textbf{Computational Basis}: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
\end{itemize}
\section*{Universal Bases}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Computational}: $\{|0\rangle, |1\rangle\}$ \\
$(\theta=0, \phi=0; \theta=\pi, \phi=0)$
\item \textbf{Hadamard}: $\{|+\rangle, |-\rangle\}$ where\\
$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$\\
$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$\\
$(\theta=\frac{\pi}{2}, \phi=0; \theta=\frac{\pi}{2}, \phi=\pi)$
\item \textbf{Phase}: $\{|+i\rangle, |-i\rangle\}$ where\\
$|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$\\
$|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$\\
$(\theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}; \theta=\frac{\pi}{2}, \phi=-\frac{\pi}{2})$
\end{itemize}
\section*{Bloch Sphere}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Equation}: $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$\\
where $\theta \in [0,\pi]$, $\phi \in [0,2\pi)$
\item \textbf{Cartesian Projection}:
\begin{align*}
x &= \sin\theta\cos\phi\\
y &= \sin\theta\sin\phi\\
z &= \cos\theta
\end{align*}
\end{itemize}
\section*{Quantum Measurement}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Probability}: For measuring state $|\psi\rangle$ in basis $|b\rangle$:
\begin{align*}
P(b) = |\langle b|\psi\rangle|^2
\end{align*}
\item \textbf{Post-measurement state}:
\begin{align*}
|\psi_{\text{new}}\rangle = \frac{|b\rangle\langle b|\psi\rangle}{\sqrt{P(b)}}
\end{align*}
\item For $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$:
\begin{align*}
P(0) = |\alpha|^2, \quad P(1) = |\beta|^2
\end{align*}
\end{itemize}
\section*{Single-Qubit Gates}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Properties}:
\begin{itemize}[nosep]
\item Reversible: $U^\dagger U = UU^\dagger = I$
\item Preserve norm: $\|U|\psi\rangle\| = \||\psi\rangle\|$
\item Linear: $U(\alpha|\psi\rangle + \beta|\phi\rangle) = \alpha U|\psi\rangle + \beta U|\phi\rangle$
\end{itemize}
\end{itemize}
\section*{Pauli Gates}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Pauli-X (NOT)}: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
\begin{itemize}[nosep]
\item $X|0\rangle = |1\rangle$, $X|1\rangle = |0\rangle$
\item $X|+\rangle = |+\rangle$, $X|-\rangle = -|-\rangle$
\end{itemize}
\item \textbf{Pauli-Y}: $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
\begin{itemize}[nosep]
\item $Y|0\rangle = i|1\rangle$, $Y|1\rangle = -i|0\rangle$
\end{itemize}
\item \textbf{Pauli-Z (Phase Flip)}: $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
\begin{itemize}[nosep]
\item $Z|0\rangle = |0\rangle$, $Z|1\rangle = -|1\rangle$
\item $Z|+\rangle = |-\rangle$, $Z|-\rangle = |+\rangle$
\end{itemize}
\end{itemize}
\section*{Rotation Gates}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{X-rotation}: $R_X(\theta) = e^{-i\theta X/2} = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$
\item \textbf{Y-rotation}: $R_Y(\theta) = e^{-i\theta Y/2} = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$
\item \textbf{Z-rotation}: $R_Z(\theta) = e^{-i\theta Z/2} = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$
\end{itemize}
\section*{Other Important Gates}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Hadamard}: $H = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
\begin{itemize}[nosep]
\item $H|0\rangle = |+\rangle$, $H|1\rangle = |-\rangle$
\item $H|+\rangle = |0\rangle$, $H|-\rangle = |1\rangle$
\item $H^2 = I$
\end{itemize}
\item \textbf{Phase (S)}: $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
\begin{itemize}[nosep]
\item $S|+\rangle = |+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
\item $S^2 = Z$
\end{itemize}
\item \textbf{T Gate}: $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
\begin{itemize}[nosep]
\item $T|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\pi/4}|1\rangle)$
\item $T^2 = S$, $T^4 = Z$
\end{itemize}
\item \textbf{General Phase}: $P(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$
\begin{itemize}[nosep]
\item $S = P(\pi/2)$, $T = P(\pi/4)$, $Z = P(\pi)$
\end{itemize}
\end{itemize}
\section*{Circuit Notation}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Elements}:
\begin{itemize}[nosep]
\item Qubit: Horizontal line
\item Gates: Boxes with labels
\item Measurement: Meter symbol (if available)
\item Time: Left $\to$ Right
\item Controlled operations: Vertical line with dot
\item Control on $|1\rangle$: Filled dot $\bullet$
\item Control on $|0\rangle$: Empty dot $\circ$
\end{itemize}
\item \textbf{Important}: Matrix order in circuit is opposite to mathematical notation
\begin{itemize}[nosep]
\item $U_1 U_2$ in circuit $=$ $U_2 U_1$ in matrix form
\end{itemize}
\end{itemize}
\section*{Multi-Qubit Gates}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{CNOT} (Controlled-NOT):
\begin{align*}
\text{CNOT} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\end{align*}
\begin{itemize}[nosep]
\item Effect: $|c,t\rangle \rightarrow |c, t \oplus c\rangle$
\item $|00\rangle \to |00\rangle$, $|01\rangle \to |01\rangle$
\item $|10\rangle \to |11\rangle$, $|11\rangle \to |10\rangle$
\end{itemize}
\item \textbf{Controlled-Z}:
\begin{align*}
\text{CZ} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\end{align*}
\begin{itemize}[nosep]
\item Effect: $|x,y\rangle \to (-1)^{xy}|x,y\rangle$
\item Only changes $|11\rangle \to -|11\rangle$
\item Symmetric: Either qubit can be control
\end{itemize}
\item \textbf{Toffoli} (CCNOT):
\begin{itemize}[nosep]
\item Effect: $|x,y,z\rangle \to |x,y,z \oplus (x \cdot y)\rangle$
\item Flips target only if both controls are $|1\rangle$
\end{itemize}
\item \textbf{SWAP}:
\begin{align*}
\text{SWAP} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\end{align*}
\begin{itemize}[nosep]
\item Effect: $|a,b\rangle \to |b,a\rangle$
\item Implementation: $\text{CNOT}_{1,2} \cdot \text{CNOT}_{2,1} \cdot \text{CNOT}_{1,2}$
\end{itemize}
\item \textbf{Flipped CNOT}:
\begin{align*}
(H \otimes H) \cdot \text{CNOT} \cdot (H \otimes H) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\end{align*}
\end{itemize}
\section*{Key Quantum Properties}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Reversibility}: All quantum gates are reversible
\begin{itemize}[nosep]
\item To reverse a circuit, apply $U^\dagger$ gates in reverse order
\end{itemize}
\item \textbf{No-Cloning Theorem}: Cannot create an identical copy of an unknown quantum state
\begin{align*}
\nexists U: U(|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle
\end{align*}
\item \textbf{Entanglement}: States that cannot be factored as tensor products of individual states
\begin{itemize}[nosep]
\item E.g., Bell state: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
\end{itemize}
\end{itemize}
\section*{Bell Pair}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Bell States} (maximally entangled):
\begin{align*}
|\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\\
|\Phi^-\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)\\
|\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)\\
|\Psi^-\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)
\end{align*}
\end{itemize}
\section*{Grover's Algorithm}
\begin{itemize}[leftmargin=*,nosep,topsep=0pt]
\item \textbf{Purpose}: Search unstructured database of $N$ items in $O(\sqrt{N})$ time
\item \textbf{Algorithm}:
\begin{enumerate}[nosep]
\item Initialize: $|s\rangle = H^{\otimes n}|0\rangle^{\otimes n}$
\item Repeat $O(\sqrt{N})$ times:
\begin{itemize}[nosep]
\item Oracle ($O$): $O|x\rangle = (-1)^{f(x)}|x\rangle$ where $f(x)=1$ for solution
\item Diffusion ($D$): $D = 2|s\rangle\langle s| - I$
\end{itemize}
\item Measure to find solution with high probability
\end{enumerate}
\end{itemize}
\conceptbox{Important Insight}{Grover's algorithm provides quadratic speedup over classical search, which is proven to be optimal for quantum algorithms}
\end{multicols}
\endgroup