diff --git a/lectures/phase-i/lecture4.tex b/lectures/phase-i/lecture4.tex index d8f68b0..c2a2068 100644 --- a/lectures/phase-i/lecture4.tex +++ b/lectures/phase-i/lecture4.tex @@ -46,7 +46,7 @@ \subsection*{Measurement and Superposition Collapse} In the computational basis, the probability of measuring $|b\rangle$ is: -\index{univesal basis!computational!measurement} +\index{universal bases!computational!measurement} \[ \boxed{ @@ -194,7 +194,8 @@ \subsection*{Circuit Notation} \index{Circuit notation} Quantum circuits visually represent quantum operations. Each qubit is represented as a horizontal line, and gates are applied sequentially from left to right. Important circuit elements include: \footnote{For rendering -quantum circuits, consider using the \texttt{quantikz} package in \LaTeX.} +quantum circuits, consider using the \texttt{quantikz} package in \LaTeX: +\url{https://ctan.org/pkg/quantikz}} \begin{itemize} @@ -204,7 +205,7 @@ \subsection*{Circuit Notation} \index{Circuit notation} \item \textbf{Time flow:} Left to right in circuits (\textit{\textbf{opposite of matrix multiplication order}}) \footnote { - Dor example, the circuit $U_1U_2$ corresponds to the + For example, the circuit $U_1U_2$ corresponds to the matrix product $U_2U_1$. } diff --git a/lectures/phase-i/lecture7.tex b/lectures/phase-i/lecture7.tex index 1d4a5a7..d6c9f33 100644 --- a/lectures/phase-i/lecture7.tex +++ b/lectures/phase-i/lecture7.tex @@ -372,11 +372,11 @@ \subsection*{Toffoli Gate} % Input nodes and AND gate (0,1) node[left] {$A$} -- ++(1,0) (0,0) node[left] {$B$} -- ++(1,0) - (2,0.5) node[and port] (myand) {} + (2,0.5) node[and port] (and) {} % Connect everything - (1,1) -- (myand.in 1) - (1,0) -- (myand.in 2) - (myand.out) -- ++(1,0) node[right] {$A \land B$}; + (1,1) -- (and.in 1) + (1,0) -- (and.in 2) + (and.out) -- ++(1,0) node[right] {$A \land B$}; \end{circuitikz} & % Truth table @@ -438,9 +438,10 @@ \subsection*{Toffoli Gate} that no information is lost. \item The composition of unitary gates remains unitary, preserving reversibility. - \item Classical \textbf{Toffoli and Fredkin gates} are reversible and can - be used to construct reversible classical circuits, which is why they - are also fundamental in quantum computing. + \item Classical Toffoli and Fredkin + \footnote{More on Fredkin gates: \url{https://en.wikipedia.org/wiki/Fredkin_gate}} + are reversible and can be used to construct reversible classical circuits, + which is why they are also fundamental in quantum computing. \item Measurement is \textbf{not} reversible, as it collapses the quantum state and introduces information loss. \end{enumerate}