-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiopsy.py
240 lines (220 loc) · 8.98 KB
/
biopsy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Defines the virtual biopsy EPSI data class.
Author(s):
Michael S Yao
M Dylan Tisdall
Licensed under the MIT License. Copyright 2022 University of Pennsylvania.
"""
import numpy as np
from pathlib import Path
from typing import Optional, Sequence, Tuple, Union
from twixtools import map_twix
class VirtualBiopsy:
def __init__(
self,
dat_fn: Union[Path, str],
seed: int = 42,
do_zero_pad: bool = True
):
"""
Args:
dat_fn: path to .dat file of raw Siemens virtual biopsy data.
seed: optional random seed. Default 42.
do_zero_pad: whether or not to zero-pad the kspace data to
square dimensions. Default True.
"""
self.dat_fn = dat_fn
self.seed = seed
if not self.dat_fn.endswith(".dat"):
raise ValueError(
f"Expecting .dat raw data file, but got {self.dat_fn} instead."
)
self.do_zero_pad = do_zero_pad
self.rng = np.random.RandomState(self.seed)
# Extract Siemens raw data.
epsi_map = map_twix(self.dat_fn)
kspace = epsi_map[-1]["image"]
kspace.flags["remove_os"] = True
kspace.flags["average"]["Seg"] = True
kspace.flags["average"]["Ave"] = False
kspace = np.squeeze(kspace[:])
# Extract relevant metadata.
metadata = epsi_map[-1]["hdr"]
# Echo spacing has units of seconds.
self.echo_spacing = metadata["Config"]["EchoSpacing_us"] / 1e6
self.len_echo_train = int(metadata["Dicom"]["EchoTrainLength"])
self.spectral_unit = 1 / (self.len_echo_train * self.echo_spacing)
# B field strength has units of Teslas. Rounding to the nearest
# integer field strength.
self.B_mag = float(round(metadata["Dicom"]["flMagneticFieldStrength"]))
self.gamma = 42.58 * 1e6 # In units of Hz / T. Assuming 1H imaging.
self.larmor_frequency = self.gamma * self.B_mag
# MR Imaging parameters. TE, TR, and total scan time are in units of
# seconds. FOV and voxel size is in units of mm.
self.TR = metadata["Config"]["TR"] / 1e6
self.TE = metadata["Meas"]["alTE"][0] / 1e6
self.scan_time = metadata["Config"]["TotalScanTimeFromUIinms"] / 1e3
self.RO_FOV = metadata["Config"]["RoFOV"]
self.RO_voxel_size = self.RO_FOV / kspace.shape[-1]
# Phase correction.
kspace = self.phase_correct(kspace)
# Spectrum is the inverse Fourier transform of the kspace data.
# Note that the kspace data is technically k-t data for EPSI.
# Therefore, the spectrum data is in x-f space.
spectrum = self.ifftnd(kspace, axes=[1, -1])
# Complex average over the repetitions.
spectrum = np.mean(spectrum, axis=0)
# Coil combination using SVD to maximize the SNR in the final output.
u, s, _ = np.linalg.svd(
np.transpose(spectrum, axes=(2, 0, 1)), full_matrices=False
)
self.spectrum = np.flip(s[:, 0] * u[:, :, 0].T)
self.kspace = self.fftnd(self.spectrum, axes=[0, -1])
if self.do_zero_pad:
self.kspace = self.zero_pad(self.kspace)
self.spectrum = self.ifftnd(self.kspace, axes=[0, -1])
self.res_axis = self.freq_axis(
np.abs(self.spectrum) / np.max(np.abs(self.spectrum))
)
def ifftnd(
self, kspace: np.ndarray, axes: Sequence[int] = [-1]
) -> np.ndarray:
"""
Performs an n-dimensional inverse fast Fourier transform.
Input:
kspace: kspace tensor.
axes: axes over which to perform the iFFT operaton.
Returns:
The inverse fast Fourier transform of kspace.
This function implementation was adapted from https://github.com/
pehses/twixtools/blob/master/demo/recon_example.ipynb
"""
if axes is None:
axes = list(range(kspace.ndim))
img = np.fft.fftshift(
np.fft.ifftn(np.fft.ifftshift(kspace, axes=axes), axes=axes),
axes=axes
)
return img * np.sqrt(np.prod(np.take(img.shape, axes)))
def fftnd(
self, img: np.ndarray, axes: Sequence[int] = [-1]
) -> np.ndarray:
"""
Performs an n-dimensional fast Fourier transform.
Input:
img: image tensor.
axes: axes over which to perform iFFT operaton.
Returns:
The fast Fourier transform of img.
This function implementation was adapted from https://github.com/
pehses/twixtools/blob/master/demo/recon_example.ipynb
"""
if axes is None:
axes = list(range(img.ndim))
kspace = np.fft.fftshift(
np.fft.fftn(np.fft.ifftshift(img, axes=axes), axes=axes),
axes=axes
)
return np.divide(
kspace, np.sqrt(np.prod(np.take(kspace.shape, axes)))
)
def phase_correct(self, kspace: np.ndarray) -> np.ndarray:
"""
Calculate and apply EPI phase correction using the approach proposed
by Tisdall MD. (2020). Scrambled readout polarities in 3D-encoded EPI
markedly reduce the coherence of N/2 ghosts. Proc ISMRM.
Input:
kspace: the extracted EPSI kspace dataset with shape .
Returns:
The phase corrected kspace data.
"""
relaxation = self.ifftnd(kspace, axes=[-1])
mean_relaxation = np.mean(relaxation, axis=0)
target = np.pad(
mean_relaxation[1:],
((0, 1), (0, 0), (0, 0)),
"constant",
constant_values=0.0
)
target[1:] += mean_relaxation[:-1]
target[1:-1] /= 2.0
delay_filter = (target * np.conj(mean_relaxation)) / np.abs(
target * mean_relaxation
)
delay_filter[0::2] = 1.0
corrected_relaxation = relaxation * delay_filter
kspace = self.fftnd(corrected_relaxation, axes=[-1])
return kspace
def freq_axis(
self,
img: np.ndarray,
signal_thresh: float = 0.2,
num_sample: int = 1000
) -> Tuple[np.ndarray]:
"""
Fits a quadratic model to determine the zero set point of the
frequency axis in a 2D virtual biopsy image.
Input:
img: 2D EPSI virtual biopsy image.
signal_thresh: threshold for image intensity values, above
which an image pixel is considered part of the EPSI
signal.
num_sample: number of signal pixels to use in quadratic
fitting. Default 1000. If this parameter is negative,
then all available signal values are used.
Returns:
pe_locs: frequency axis locations along the frequency dimension.
ro_locs: frequency axis locations along the spatial readout
dimension.
"""
# Threshold the signal in image space (empirically determined).
w_locs, h_locs = np.where(img > signal_thresh)
self.biopsy_lims = np.min(w_locs), np.max(w_locs)
# Randomly sample a subset of the signal points in image space.
if num_sample < 0:
num_sample = h_locs.shape[0]
num_sample = max(3, min(h_locs.shape[0], num_sample))
idxs = self.rng.choice(
np.arange(h_locs.shape[0]), size=num_sample, replace=False
)
h_locs, w_locs = h_locs[idxs], w_locs[idxs]
# Fit the data to a quadratic model.
q_model = np.poly1d(np.polyfit(h_locs, w_locs, 2))
ro_locs = np.arange(0, img.shape[-1])
pe_locs = q_model(ro_locs)
return pe_locs, ro_locs
def zero_pad(self, kspace: np.ndarray) -> np.ndarray:
"""
Zero-pads an input kspace data to make the dataset square.
Input:
kspace: kspace dataset with dimensions HW. Padding is applied
along the H dimension.
Returns:
Zero-padded kspace.
"""
h, w = kspace.shape
padding = np.zeros(((w - h) // 2, w), dtype=kspace.dtype)
return np.concatenate((padding, kspace, padding,), axis=0)
def center_crop(
self, crop_size: Optional[Tuple[int]] = None, inplace: bool = False
) -> Optional[np.ndarray]:
"""
Center crops the complex biopsy image to the specified shape.
Input:
crop_size: crop size. Default (H/2)x(W/2).
inplace: whether to directly modify self.cimg.
Returns:
Copy of self.cimg center cropped to crop_size if not inplace.
Otherwise, return None.
"""
if crop_size is None:
crop_size = (self.cimg.shape[-2] // 2, self.cimg.shape[-1] // 2)
rmin = (self.cimg.shape[-2] - crop_size[0]) // 2
rmax = rmin + crop_size[0]
cmin = (self.cimg.shape[-1] - crop_size[1]) // 2
cmax = cmin + crop_size[1]
if inplace:
self.cimg = self.cimg[rmin:rmax, cmin:cmax]
return None
else:
return np.copy(self.cimg)[rmin:rmax, cmin:cmax]