forked from NirDiamant/RAG_Techniques
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreranking.py
173 lines (136 loc) · 6.78 KB
/
reranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys
from dotenv import load_dotenv
from langchain.docstore.document import Document
from typing import List, Any
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain_core.retrievers import BaseRetriever
from sentence_transformers import CrossEncoder
from pydantic import BaseModel, Field
import argparse
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '..')))
from helper_functions import *
from evaluation.evalute_rag import *
# Load environment variables from a .env file
load_dotenv()
# Set the OpenAI API key environment variable
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
# Helper Classes and Functions
class RatingScore(BaseModel):
relevance_score: float = Field(..., description="The relevance score of a document to a query.")
def rerank_documents(query: str, docs: List[Document], top_n: int = 3) -> List[Document]:
prompt_template = PromptTemplate(
input_variables=["query", "doc"],
template="""On a scale of 1-10, rate the relevance of the following document to the query. Consider the specific context and intent of the query, not just keyword matches.
Query: {query}
Document: {doc}
Relevance Score:"""
)
llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
llm_chain = prompt_template | llm.with_structured_output(RatingScore)
scored_docs = []
for doc in docs:
input_data = {"query": query, "doc": doc.page_content}
score = llm_chain.invoke(input_data).relevance_score
try:
score = float(score)
except ValueError:
score = 0 # Default score if parsing fails
scored_docs.append((doc, score))
reranked_docs = sorted(scored_docs, key=lambda x: x[1], reverse=True)
return [doc for doc, _ in reranked_docs[:top_n]]
class CustomRetriever(BaseRetriever, BaseModel):
vectorstore: Any = Field(description="Vector store for initial retrieval")
class Config:
arbitrary_types_allowed = True
def get_relevant_documents(self, query: str, num_docs=2) -> List[Document]:
initial_docs = self.vectorstore.similarity_search(query, k=30)
return rerank_documents(query, initial_docs, top_n=num_docs)
class CrossEncoderRetriever(BaseRetriever, BaseModel):
vectorstore: Any = Field(description="Vector store for initial retrieval")
cross_encoder: Any = Field(description="Cross-encoder model for reranking")
k: int = Field(default=5, description="Number of documents to retrieve initially")
rerank_top_k: int = Field(default=3, description="Number of documents to return after reranking")
class Config:
arbitrary_types_allowed = True
def get_relevant_documents(self, query: str) -> List[Document]:
initial_docs = self.vectorstore.similarity_search(query, k=self.k)
pairs = [[query, doc.page_content] for doc in initial_docs]
scores = self.cross_encoder.predict(pairs)
scored_docs = sorted(zip(initial_docs, scores), key=lambda x: x[1], reverse=True)
return [doc for doc, _ in scored_docs[:self.rerank_top_k]]
async def aget_relevant_documents(self, query: str) -> List[Document]:
raise NotImplementedError("Async retrieval not implemented")
def compare_rag_techniques(query: str, docs: List[Document]) -> None:
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(docs, embeddings)
print("Comparison of Retrieval Techniques")
print("==================================")
print(f"Query: {query}\n")
print("Baseline Retrieval Result:")
baseline_docs = vectorstore.similarity_search(query, k=2)
for i, doc in enumerate(baseline_docs):
print(f"\nDocument {i + 1}:")
print(doc.page_content)
print("\nAdvanced Retrieval Result:")
custom_retriever = CustomRetriever(vectorstore=vectorstore)
advanced_docs = custom_retriever.get_relevant_documents(query)
for i, doc in enumerate(advanced_docs):
print(f"\nDocument {i + 1}:")
print(doc.page_content)
# Main class
class RAGPipeline:
def __init__(self, path: str):
self.vectorstore = encode_pdf(path)
self.llm = ChatOpenAI(temperature=0, model_name="gpt-4o")
def run(self, query: str, retriever_type: str = "reranker"):
if retriever_type == "reranker":
retriever = CustomRetriever(vectorstore=self.vectorstore)
elif retriever_type == "cross_encoder":
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
retriever = CrossEncoderRetriever(
vectorstore=self.vectorstore,
cross_encoder=cross_encoder,
k=10,
rerank_top_k=5
)
else:
raise ValueError("Unknown retriever type. Use 'reranker' or 'cross_encoder'.")
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
result = qa_chain({"query": query})
print(f"\nQuestion: {query}")
print(f"Answer: {result['result']}")
print("\nRelevant source documents:")
for i, doc in enumerate(result["source_documents"]):
print(f"\nDocument {i + 1}:")
print(doc.page_content[:200] + "...")
# Argument Parsing
def parse_args():
parser = argparse.ArgumentParser(description="RAG Pipeline")
parser.add_argument("--path", type=str, default="../data/Understanding_Climate_Change.pdf", help="Path to the document")
parser.add_argument("--query", type=str, default='What are the impacts of climate change?', help="Query to ask")
parser.add_argument("--retriever_type", type=str, default="reranker", choices=["reranker", "cross_encoder"],
help="Type of retriever to use")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
pipeline = RAGPipeline(path=args.path)
pipeline.run(query=args.query, retriever_type=args.retriever_type)
# Demonstrate the reranking comparison
# Example that demonstrates why we should use reranking
chunks = [
"The capital of France is great.",
"The capital of France is huge.",
"The capital of France is beautiful.",
"""Have you ever visited Paris? It is a beautiful city where you can eat delicious food and see the Eiffel Tower.
I really enjoyed all the cities in France, but its capital with the Eiffel Tower is my favorite city.""",
"I really enjoyed my trip to Paris, France. The city is beautiful and the food is delicious. I would love to visit again. Such a great capital city."
]
docs = [Document(page_content=sentence) for sentence in chunks]
compare_rag_techniques(query="what is the capital of france?", docs=docs)