-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathess_curve.py
322 lines (279 loc) · 9.62 KB
/
ess_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# ESS computed for the curve on the sphere by varying the number of dimensions and
# the concentration parameter kappa.
import os
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from csb.io import dump, load
METHODS = ("sss-reject", "sss-shrink", "rwmh", "hmc")
ALGOS = {
"sss-reject": "geoSSS (reject)",
"sss-shrink": "geoSSS (shrink)",
"rwmh": "RWMH",
"hmc": "HMC",
}
plt.rc("font", size=20)
def load_samples(
base_path,
varying_param_values,
varying_param_name,
fixed_params,
n_runs=10,
verbose=False,
):
"""
Load chains of samples for varying a parameter.
Parameters
----------
base_path : str
Base directory where the samples are stored.
varying_param_values : list
List of values for the varying parameter (kappas or dimensions).
varying_param_name : str
Name of the varying parameter ('kappa' or 'n_dim').
fixed_params : dict
Dictionary of fixed parameters (e.g., {'n_dim': 10} or {'kappa': 500}).
n_runs : int, optional
Number of runs (chains), by default 10.
verbose : bool, optional
Whether to print loading progress, by default False.
Returns
-------
dict
Dictionary that can be read as data_dict[param_value][method]
"""
# Initialize a dictionary to hold data for each varying parameter value and method
data_dict = {
param_value: {method: [] for method in METHODS}
for param_value in varying_param_values
}
for param_value in varying_param_values:
# Update the parameters with the varying parameter
params = fixed_params.copy()
params[varying_param_name] = param_value
# Build subdir name based on parameters
n_dim = params.get("n_dim")
kappa = params.get("kappa")
subdir = f"curve_{n_dim}d_kappa_{float(kappa)}"
for chain in range(n_runs):
# Build samples filename
filename = f"curve_samples_{n_dim}d_kappa_{float(kappa)}_run{chain}.pkl"
samples_file = os.path.join(base_path, subdir, filename)
if os.path.exists(samples_file):
samples_all = load(samples_file)
print(f"Loading file {samples_file}") if verbose else None
# Add to the main dictionary
for method in METHODS:
if method in samples_all:
data_dict[param_value][method].append(samples_all[method])
else:
error_msg = (
f"Make sure samples are precomputed and stored for {samples_file}"
)
raise FileNotFoundError(error_msg)
# Stack the lists into arrays
for param_value in data_dict:
for method in data_dict[param_value]:
data_dict[param_value][method] = np.stack(
data_dict[param_value][method], axis=0
)
return data_dict
def calc_ess(samples_dict, verbose=False):
"""
Calculate the Effective Sample Size (ESS) for every dimension and for each method
using the "bulk" method from the arviz package.
Parameters
----------
samples_dict : dict
Dictionary containing samples for each method with shape (chains, draws, dimensions).
verbose : bool
Returns
-------
dict
ESS values per dimension per method.
"""
# Convert the dict to an ArviZ dataset
samples_az = az.dict_to_dataset(samples_dict)
# Ensure there are enough chains
for method in METHODS:
chains = samples_az[method].values.shape[0]
assert chains >= 10, "ESS calculation requires at least 10 chains."
ess_vals = {}
for method in METHODS:
samples = samples_az[method]
ess = az.ess(samples, relative=True)[method]
ess_vals[method] = ess
if verbose:
for i, val in enumerate(ess.values):
print(f"{method} ESS dim {i+1}: {val:.4%}")
return ess_vals
def calc_ess_varying_param(
param_values,
datasets,
ess_filepath,
verbose=False,
):
"""
Calculate or load ESS values for varying a parameter (kappas or dimensions).
Parameters
----------
param_values : list
List of varying parameter values.
datasets : dict
Loaded datasets, indexed by parameter value.
ess_filepath : str
File path to save or load ESS values.
verbose : bool
Returns
-------
dict
ESS values indexed by parameter value and method.
"""
ess_vals = {}
for param_value in param_values:
print(f"Calculating ESS for {param_value=}")
ess_vals[param_value] = calc_ess(datasets[param_value], verbose=verbose)
dump(ess_vals, ess_filepath)
return ess_vals
def ess_plot_varying_param(
ess_vals,
param_values,
param_name,
select_dim_idx: int = 0,
y_lim_factor: float = 18.0,
) -> plt.Figure:
"""
Plot ESS values against a varying parameter.
Parameters
----------
ess_vals : dict
ESS values indexed by parameter value and method.
param_values : list
List of parameter values.
param_name : str
Name of the parameter for labeling.
select_dim_idx : int
Index to select the ESS values that are computed for every dimension.
y_lim_factor : float
Factor to multiply the y limit by.
Returns
-------
plt.Figure
"""
ess_single_dim = {method: [] for method in METHODS}
for method in METHODS:
for param_value in param_values:
ess_val = ess_vals[param_value][method][select_dim_idx].values
ess_single_dim[method].append(float(ess_val))
# Plotting
fig, ax = plt.subplots(figsize=(10, 6))
markers = ["8", "s", "^", "P"]
color_palette = sns.color_palette("deep", n_colors=len(METHODS))
for i, method in enumerate(METHODS):
label = ALGOS[method]
ax.plot(
param_values,
ess_single_dim[method],
marker=markers[i],
markersize=10,
label=label,
color=color_palette[i],
)
ax.set_yscale("log")
# Adjust y limit
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin, ymax * y_lim_factor)
ax.legend(loc="upper right")
ax.set_xlabel(param_name)
ax.set_ylabel("relative ESS (log)")
ax.set_xticks(param_values)
ax.set_xticklabels(param_values)
fig.tight_layout()
return fig
if __name__ == "__main__":
plotting_varying_kappa = True
plotting_varying_ndim = False
if plotting_varying_kappa:
# parameters for loading samples and calculating ESS
kappas = np.arange(100, 900, 100)
n_dim = 5
n_runs = 10
subdir = f"results/curve_{n_dim}d_vary_kappa_nruns_{n_runs}"
ess_filename = f"ess_curve_{n_dim}d_varying_kappa.pkl"
ess_filepath = os.path.join(subdir, ess_filename)
recompute_ess = False
# load or calculate ESS
if not recompute_ess and os.path.exists(ess_filepath):
print("Loading ESS values from the file...")
ess_kappas = load(ess_filepath)
else:
# load samples for varying kappa
print(f"Loading samples for varying kappa from {subdir}...")
datasets_varying_kappa = load_samples(
base_path=subdir,
varying_param_values=kappas,
varying_param_name="kappa",
fixed_params={"n_dim": n_dim},
n_runs=n_runs,
verbose=True,
)
# calculate ESS
ess_kappas = calc_ess_varying_param(
param_values=kappas,
datasets=datasets_varying_kappa,
ess_filepath=ess_filepath,
verbose=True,
)
# plotting
fig = ess_plot_varying_param(
ess_vals=ess_kappas,
param_values=kappas,
param_name=r"concentration parameter $\kappa$",
select_dim_idx=0,
y_lim_factor=28,
)
fig.savefig(
f"{subdir}/ess_curve_10d_varying_kappa.pdf", transparent=True, dpi=150
)
if plotting_varying_ndim:
# parameters for loading samples and calculating ESS
kappa = 500.0
ndims = np.arange(3, 27, 3)
n_runs = 10
subdir = f"results/curve_kappa_{float(kappa)}_vary_ndim_nruns_{n_runs}"
ess_filename = f"ess_curve_kappa_{int(kappa)}_varying_ndim.pkl"
ess_filepath = os.path.join(subdir, ess_filename)
recompute_ess = False
if not recompute_ess and os.path.exists(ess_filepath):
print("Loading ESS values from the file...")
ess_ndims = load(ess_filepath)
else:
# load samples for varying n_dim
print(f"Loading samples for varying n_dim from {subdir}...")
datasets_varying_ndim = load_samples(
base_path=subdir,
varying_param_values=ndims,
varying_param_name="n_dim",
fixed_params={"kappa": kappa},
n_runs=n_runs,
verbose=True,
)
# calculate ESS
ess_ndims = calc_ess_varying_param(
param_values=ndims,
datasets=datasets_varying_ndim,
ess_filepath=ess_filepath,
verbose=True,
)
# plotting
fig = ess_plot_varying_param(
ess_vals=ess_ndims,
param_values=ndims,
param_name="dimension $d$",
select_dim_idx=0,
y_lim_factor=13,
)
fig.savefig(
f"{subdir}/ess_curve_kappa_{int(kappa)}_varying_ndim.pdf",
)