-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathess_mixture_vMF.py
261 lines (210 loc) · 7.73 KB
/
ess_mixture_vMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import re
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from csb.io import load
METHODS = ["sss-reject", "sss-shrink", "rwmh", "hmc"]
ALGOS = {
"sss-reject": "geoSSS (reject)",
"sss-shrink": "geoSSS (shrink)",
"rwmh": "RWMH",
"hmc": "HMC",
}
plt.rc("font", size=16)
def get_dataset(d, K, path, kappas):
# create a list[dict] for values
datasets = []
for kappa in kappas:
subdir = f"mixture_vMF_d{d}_K{K}_kappa{kappa}"
ess_file = f"{path}/{subdir}/{subdir}_ess.pkl.gz"
ess = load(ess_file, gzip=True)
for method in METHODS:
for ess_val in ess[method]:
datasets.append(
{"Kappa": kappa, "Method": ALGOS[method], "ESS": ess_val}
)
return pd.DataFrame(datasets)
def ess_boxplot(d, K, kappas, path, savefig=True):
"""
Box plot for ess values per dimension for varying kappas.
Args:
d (int): dimension
K (int): components
kappas (float): concentration parameter
path (str): results dir
savefig (bool): saving figure
"""
algos = ALGOS
# convert the extracted pandas dataframe
ess_df = get_dataset(d, K, path, kappas)
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
# sns box plot
sns.boxplot(
data=ess_df,
x="Kappa",
y="ESS",
hue="Method",
hue_order=list(algos.values()),
palette="Set2",
ax=ax,
)
# add labels and titles
ax.set_yscale("log")
ax.set_ylabel("relative ESS (Log scale)")
ax.legend()
plt.xticks()
# add vertical lines between the Kappa values
for i in range(len(kappas)):
x = 0.5 + i
ax.axvline(x=x, linestyle="--", color="gray", alpha=0.8)
if savefig:
savefile = (
f"{path}/d{d}_K{K}_kappa{kappas.min()}_{kappas.max()}_ess_boxplot.pdf"
)
fig.savefig(savefile, transparent=True)
def ess_plot(
d: int, K: int, path: str, kappas: np.ndarray, dim: int = 0, savefig: bool = False
) -> None:
"""
Plotting ess values for a given dimension `dim` amongst `d` dimensions against kappa
for all the samplers.
Args:
d (int): dimension of the mixture of vMF
K (int): mixture components
kappas (float): concentration parameter
path (str): results dir
dim (int, optional): selecting a dimension to plot. Defaults to 0.
savefig (bool, optional): save figure. defaults to True
"""
# convert the extracted pandas dataframe
ess_df = get_dataset(d, K, path, kappas)
# extract single value for the given `dim` dimension (default=0)
ess_vals = {method: [] for method in METHODS}
for method in METHODS:
for kappa in kappas:
ess_val = ess_df.loc[
(ess_df["Kappa"] == kappa) & (ess_df["Method"] == ALGOS[method]), "ESS"
].iloc[dim]
ess_vals[method].append(ess_val)
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
markers = ["8", "s", "^", "P"]
color_palette = sns.color_palette("deep", n_colors=len(METHODS))
for i, method in enumerate(METHODS):
label = ALGOS[method]
ax.plot(
kappas,
ess_vals[method],
marker=markers[i],
markersize=10,
label=label,
color=color_palette[i],
)
ax.set_yscale("log")
ax.legend()
ax.set_xlabel(r"concentration parameter $\kappa$")
ax.set_ylabel("relative ESS (log)")
# Set the x-tick locations and labels
ax.set_xticks(kappas)
ax.set_xticklabels(kappas)
if savefig:
savefile = f"{path}/d{d}_K{K}_kappa{kappas.min()}_{kappas.max()}_ess_plot.pdf"
fig.savefig(savefile, transparent=True)
def extract_evals(d, K, kappas, path) -> dict:
"""
Extracting the evaluations for log_prob, gradient, rejected samples
from every log txt file (consisting of 10 runs) that corresponds to a
specific kappa.
Ex: For extracting logprob values of sss-reject for a kappa of 100
vals = evals[100]['sss-reject]['logprob']
Args:
d (int): dimension
K (int, optional): No. of components of mixture of vMF. Defaults to 5.
kappas (ndarray or list, optional): list of concentration parameters. Defaults to None.
Returns:
evals (dict[dict[list]])
"""
if kappas is None:
kappas = np.arange(50, 550, 50)
methods = ["sss-reject", "sss-shrink", "rwmh", "hmc"]
evals = {kappa: None for kappa in kappas}
for kappa in kappas:
# load file path
subdir = f"mixture_vMF_d{d}_K{K}_kappa{kappa}"
filepath = f"{path}/{subdir}/{subdir}_log.txt"
# read and extract details from the txt file
with open(f"{filepath}", "r") as file:
# create an empty dict[dict[list]]
evals_kappa = {
method: {"logprob": [], "reject": [], "grad": []} for method in methods
}
for line in file:
# search for logprob through all methods
for method in methods:
match_logprob = re.search(
rf"logprob calls for {method}: (\d+)", line
)
if match_logprob:
logprob_num = int(match_logprob.group(1))
evals_kappa[method]["logprob"].append(logprob_num)
# search for rejected nums through slice samplers
for method in ["sss-reject", "sss-shrink"]:
match_reject = re.search(
rf"Rejected samples for {method}: (\d+)", line
)
if match_reject:
reject_num = int(match_reject.group(1))
evals_kappa[method]["reject"].append(reject_num)
# gradient evals for hmc
match_grad = re.search(r"gradient calls for hmc: (\d+)", line)
if match_grad:
grad_num = int(match_grad.group(1))
evals_kappa["hmc"]["grad"].append(grad_num)
# update dictionary for the file corresponding to `kappa`
evals[kappa] = evals_kappa
return evals
def plot_rejected_samples(d, K, kappas, path, savefig=False):
methods = METHODS[:2]
evals = extract_evals(d, K, kappas, path)
# extract values from a single run for different kappas
vals_shrink = []
vals_reject = []
for kappa in kappas:
# normalized over 1e6 samples
vals_reject.append(evals[kappa]["sss-reject"]["reject"][0] / 1e6)
vals_shrink.append(evals[kappa]["sss-shrink"]["reject"][0] / 1e6)
print(vals_reject)
print(vals_shrink)
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
markers = ["8", "s"]
color_palette = sns.color_palette("deep", 2)
for i, vals in enumerate([vals_reject, vals_shrink]):
ax.plot(
kappas,
vals,
marker=markers[i],
markersize=10,
label=ALGOS[methods[i]],
color=color_palette[i],
)
ax.set_xlabel(r"concentration parameter $\kappa$")
ax.set_ylabel("number of rejections")
ax.legend()
# Set the x-tick locations and labels
ax.set_xticks(kappas)
ax.set_xticklabels(kappas)
if savefig:
savefile = (
f"{path}/d{d}_K{K}_kappa{kappas.min()}_{kappas.max()}_nrejections.pdf"
)
fig.savefig(savefile, transparent=True)
if __name__ == "__main__":
# params
d = 10
K = 5
kappas = np.arange(50, 550, 50)
path = f"results/mix_vMF_d{d}_K{K}"
# assumes precomputed ess for kappa values between 50 and 500
ess_plot(d, K, path, kappas, savefig=True)
plot_rejected_samples(d, K, kappas, path, savefig=True)
plt.show()