We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi,im trying to adapt the Vader to dynamicrafter, but I facing some bug when accelerator.backward(loss),here is the error,. torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 982, in run_training accelerator.backward(loss) File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 1143, in <module> run_training(args) torch.utils.checkpoint.CheckpointError: torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)}
torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 982, in run_training accelerator.backward(loss) File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 1143, in <module> run_training(args) torch.utils.checkpoint.CheckpointError: torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)}
The text was updated successfully, but these errors were encountered:
@Caixy1113 is this fixed?
Sorry, something went wrong.
No branches or pull requests
Hi,im trying to adapt the Vader to dynamicrafter, but I facing some bug when accelerator.backward(loss),here is the error,.
torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 982, in run_training accelerator.backward(loss) File "/home/cxy/DynamiCrafter/scripts/main/train_t2v_lora.py", line 1143, in <module> run_training(args) torch.utils.checkpoint.CheckpointError: torch.utils.checkpoint: Recomputed values for the following tensors have different metadata than during the forward pass. tensor at position 8: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 9: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 10: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 11: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 12: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 13: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 14: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 15: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 16: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 17: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 18: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 19: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 20: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 21: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 22: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 23: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 24: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 25: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 26: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 27: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 29: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 30: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 31: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 32: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 33: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 34: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 35: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 36: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 37: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 38: saved metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 39: saved metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 40: saved metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 41: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 42: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 43: saved metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 44: saved metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 45: saved metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 46: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 47: saved metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([64, 2, 320]), 'dtype': torch.bool, 'device': device(type='cuda', index=0)} tensor at position 48: saved metadata: {'shape': torch.Size([320]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 49: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 50: saved metadata: {'shape': torch.Size([64, 2, 1]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([4, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 51: saved metadata: {'shape': torch.Size([320, 2560]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([128, 4]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 52: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 64, 2]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 53: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} tensor at position 54: saved metadata: {'shape': torch.Size([64, 2, 1280]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 2]), 'dtype': torch.float32, 'device': device(type='cuda', index=0)} tensor at position 55: saved metadata: {'shape': torch.Size([1280, 320]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)} recomputed metadata: {'shape': torch.Size([320, 2, 64]), 'dtype': torch.float16, 'device': device(type='cuda', index=0)}
The text was updated successfully, but these errors were encountered: