-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathjax_example_HNN.py
453 lines (359 loc) · 17.3 KB
/
jax_example_HNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import optax
import numpy as np
import time
import jax
import jax.numpy as jnp
import matplotlib as mp
import haiku as hk
import dill as pickle
import functools
try:
mp.use("Qt5Agg")
mp.rc('text', usetex=False)
#mp.rcParams['text.latex.preamble'] = r"\usepackage{amsmath}"
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
except ImportError:
pass
import deep_lagrangian_networks.jax_HNN_model as hnn
from deep_lagrangian_networks.replay_memory import ReplayMemory
from deep_lagrangian_networks.utils import load_dataset, init_env, activations, get_params
import os
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '0.4'
if __name__ == "__main__":
# Read Command Line Arguments:
parser = argparse.ArgumentParser()
parser.add_argument("-c", nargs=1, type=int, required=False, default=[True, ], help="Training using CUDA.")
parser.add_argument("-i", nargs=1, type=int, required=False, default=[0, ], help="Set the CUDA id.")
parser.add_argument("-s", nargs=1, type=int, required=False, default=[0, ], help="Set the random seed")
parser.add_argument("-r", nargs=1, type=int, required=False, default=[1, ], help="Render the figure")
parser.add_argument("-l", nargs=1, type=int, required=False, default=[0, ], help="Load the DeLaN model")
parser.add_argument("-m", nargs=1, type=int, required=False, default=[1, ], help="Save the DeLaN model")
parser.add_argument("-d", nargs=1, type=str, required=False, default=['uniform', ], help="Dataset")
parser.add_argument("-t", nargs=1, type=str, required=False, default=['structured', ], help="Hamiltonian Type")
seed, cuda, render, load_model, save_model = init_env(parser.parse_args())
rng_key = jax.random.PRNGKey(seed)
dataset = str(parser.parse_args().d[0])
model_id = str(parser.parse_args().t[0])
# Construct Hyperparameters:
if model_id == "structured":
hamiltonian_type = hnn.structured_hamiltonian_fn
elif model_id == "black_box":
hamiltonian_type = hnn.blackbox_hamiltonian_fn
else:
raise ValueError
# Construct Hyperparameters:
hyper = {
'dataset': dataset,
'n_width': 64,
'n_depth': 2,
'n_minibatch': 512,
'diagonal_epsilon': 0.1,
'diagonal_shift': 0.0,
'activation': 'tanh',
'learning_rate': 1.e-04,
'weight_decay': 1.e-5,
'max_epoch': int(2.5 * 1e3) if dataset == "uniform" else int(5 * 1e3),
'hamiltonian_type': hamiltonian_type,
}
model_id = "black_box"
if hyper['hamiltonian_type'].__name__ == 'structured_hamiltonian_fn':
model_id = "structured"
if load_model:
with open(f"data/hnn_models/hnn_{model_id}_{hyper['dataset']}_seed_{seed}.jax", 'rb') as f:
data = pickle.load(f)
hyper = data["hyper"]
params = data["params"]
else:
params = None
# Read the dataset:
if hyper['dataset'] == "char":
train_data, test_data, divider, dt = load_dataset(
filename="data/character_data.pickle",
test_label=["e", "q", "v"])
elif hyper['dataset'] == "uniform":
train_data, test_data, divider, dt = load_dataset(
filename="data/uniform_data.pickle",
test_label=["Test 0", "Test 1", "Test 2"])
else:
raise ValueError
train_labels, train_qp, train_qv, train_qa, train_p, train_pd, train_tau = train_data
test_labels, test_qp, test_qv, test_qa, test_p, test_pd, test_tau, test_m, test_c, test_g = test_data
n_dof = test_qp.shape[-1]
# Generate Replay Memory:
mem_dim = ((n_dof,), (n_dof,), (n_dof,), (n_dof,), (n_dof,))
mem = ReplayMemory(train_qp.shape[0], hyper["n_minibatch"], mem_dim)
mem.add_samples([train_qp, train_qv, train_p, train_pd, train_tau])
print("\n\n################################################")
print("Characters:")
print(" Test Characters = {0}".format(test_labels))
print(" Train Characters = {0}".format(train_labels))
print("# Training Samples = {0:05d}".format(int(train_qp.shape[0])))
print("")
# Training Parameters:
print("\n################################################")
print("Training Hamiltonian Neural Networks (HNN):\n")
# Construct HNN:
t0 = time.perf_counter()
hamiltonian_fn = hk.transform(functools.partial(
hyper['hamiltonian_type'],
n_dof=n_dof,
shape=(hyper['n_width'],) * hyper['n_depth'],
activation=activations[hyper['activation']],
epsilon=hyper['diagonal_epsilon'],
shift=hyper['diagonal_shift'],
))
q, qd, p, pd, tau = [jnp.array(x) for x in next(iter(mem))]
rng_key, init_key = jax.random.split(rng_key)
# Initialize Parameters:
if params is None:
params = hamiltonian_fn.init(init_key, q[0], qd[0])
# Trace Model:
hamiltonian = hamiltonian_fn.apply
vmap_hamiltonian = jax.vmap(hamiltonian, [None, None, 0, 0])
hnn_model = jax.jit(functools.partial(hnn.dynamics_model, hamiltonian=hamiltonian, n_dof=n_dof))
_ = hnn_model(params, None, q[:5], p[:5], pd[:5], tau[:5])
t_build = time.perf_counter() - t0
print(f"HNN Build Time = {t_build:.2f}s")
# Generate & Initialize the Optimizer:
t0 = time.perf_counter()
optimizer = optax.adamw(
learning_rate=hyper['learning_rate'],
weight_decay=hyper['weight_decay']
)
opt_state = optimizer.init(params)
loss_fn = functools.partial(
hnn.forward_loss_fn,
hamiltonian=hamiltonian,
n_dof=n_dof,
norm_tau=jnp.var(train_tau, axis=0),
norm_qd=jnp.var(train_qv, axis=0),
norm_pd=jnp.var(train_pd, axis=0),
)
def update_fn(params, opt_state, q, qd, p, pd, tau):
(_, logs), grads = jax.value_and_grad(loss_fn, 0, has_aux=True)(params, q, qd, p, pd, tau)
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return params, opt_state, logs
update_fn = jax.jit(update_fn)
_, _, logs = update_fn(params, opt_state, q[:1], qd[:1], p[:1], pd[:1], tau[:1])
t_build = time.perf_counter() - t0
print(f"Optimizer Build Time = {t_build:.2f}s")
# Start Training Loop:
t0_start = time.perf_counter()
print("")
epoch_i = 0
while epoch_i < hyper['max_epoch'] and not load_model:
n_batches = 0
logs = jax.tree.map(lambda x: x * 0.0, logs)
for data_batch in mem:
t0_batch = time.perf_counter()
q, qd, p, pd, tau = [jnp.array(x) for x in data_batch]
params, opt_state, batch_logs = update_fn(params, opt_state, q, qd, p, pd, tau)
# Update logs:
n_batches += 1
logs = jax.tree.map(lambda x, y: x + y, logs, batch_logs)
t_batch = time.perf_counter() - t0_batch
# Update Epoch Loss & Computation Time:
epoch_i += 1
logs = jax.tree.map(lambda x: x/n_batches, logs)
if epoch_i == 1 or np.mod(epoch_i, 100) == 0:
print("Epoch {0:05d}: ".format(epoch_i), end=" ")
print(f"Time = {time.perf_counter() - t0_start:05.1f}s", end=", ")
print(f"Loss = {logs['loss']:.1e}", end=", ")
print(f"Inv = {logs['inverse_mean']:.1e} \u00B1 {1.96 * np.sqrt(logs['inverse_var']):.1e}", end=", ")
print(f"For = {logs['forward_mean']:.1e} \u00B1 {1.96 * np.sqrt(logs['forward_var']):.1e}", end=", ")
print(f"Power = {logs['energy_mean']:.1e} \u00B1 {1.96 * np.sqrt(logs['energy_var']):.1e}")
# Save the Model:
if save_model:
with open(f"data/hnn_models/hnn_{model_id}_{hyper['dataset']}_seed_{seed}.jax", "wb") as file:
pickle.dump(
{"epoch": epoch_i,
"hyper": hyper,
"params": params,
"seed": seed,
},
file)
print("\n################################################")
print("Evaluating HNN:")
# Convert NumPy samples to Jax:
q, qd, qdd = jnp.array(test_qp), jnp.array(test_qv), jnp.array(test_qa)
p, pd = jnp.array(test_p), jnp.array(test_pd)
zeros = jnp.zeros_like(q)
# Compute Mass Matrix by approximation from BLACK-BOX Hamiltonian:
e10 = jnp.stack([jnp.ones(q.shape[0]), jnp.zeros(q.shape[0])], axis=-1)
e01 = jnp.stack([jnp.zeros(q.shape[0]), jnp.ones(q.shape[0])], axis=-1)
e11 = jnp.ones_like(q)
V = vmap_hamiltonian(params, None, q, zeros)
inv_mass_mat_00 = vmap_hamiltonian(params, None, q, e10) - V
inv_mass_mat_11 = vmap_hamiltonian(params, None, q, e01) - V
inv_mass_mat_01 = 1./2. * (vmap_hamiltonian(params, None, q, e11) - V - inv_mass_mat_00 - inv_mass_mat_11)
inv_mass_mat = 2. * jnp.stack([
jnp.stack([inv_mass_mat_00, inv_mass_mat_01], axis=-1),
jnp.stack([inv_mass_mat_01, inv_mass_mat_11], axis=-1)],
axis=-1)
mass_mat = jax.vmap(jnp.linalg.inv, (0,))(inv_mass_mat)
# Compute Mass Matrix from STRUCTURED Hamiltonian:
if hyper['hamiltonian_type'].__name__ == 'structured_hamiltonian_fn':
mass_matrix_fn = functools.partial(
hnn.inv_mass_matrix_fn,
n_dof=n_dof,
shape=(hyper['n_width'],) * hyper['n_depth'],
activation=activations[hyper['activation']],
epsilon=hyper['diagonal_epsilon'],
shift=hyper['diagonal_shift'],)
params_mass_matrix, params_potential_energy = get_params(params, "mass_matrix")
vmap_mass_matrix_fn = jax.vmap(hk.transform(mass_matrix_fn).apply, [None, None, 0])
pred_inv_mass_mat = vmap_mass_matrix_fn(params_mass_matrix, None, q)
pred_mass_mat = jax.vmap(jnp.linalg.inv, (0,))(pred_inv_mass_mat)
# np.testing.assert_allclose(mass_mat, pred_mass_mat, atol=1.e-6)
# Compute the torque decomposition:
hnn_g = hnn_model(params, None, q, zeros, zeros, zeros)[2]
hnn_m = jax.vmap(jnp.matmul, (0, 0))(mass_mat, qdd)
hnn_minus_dHdq_quad = hnn_model(params, None, q, p, zeros, zeros)[2] - hnn_g
hnn_dHdt_qd = pd - hnn_m
hnn_c = hnn_dHdt_qd + hnn_minus_dHdq_quad
t0_evaluation = time.perf_counter()
hnn_tau = hnn_model(params, None, q, p, pd, 0.0 * q)[2]
t_eval = (time.perf_counter() - t0_evaluation) / float(q.shape[0])
# Compute Errors:
test_dEdt = np.sum(test_tau * test_qv, axis=1).reshape((-1, 1))
err_g = 1. / float(test_qp.shape[0]) * np.sum((hnn_g - test_g) ** 2)
err_m = 1. / float(test_qp.shape[0]) * np.sum((hnn_m - test_m) ** 2)
err_c = 1. / float(test_qp.shape[0]) * np.sum((hnn_c - test_c) ** 2)
err_tau = 1. / float(test_qp.shape[0]) * np.sum((hnn_tau - test_tau) ** 2)
print("\nPerformance:")
print(" Torque MSE = {0:.3e}".format(err_tau))
print(" Inertial MSE = {0:.3e}".format(err_m))
print("Coriolis & Centrifugal MSE = {0:.3e}".format(err_c))
print(" Gravitational MSE = {0:.3e}".format(err_g))
print(" Comp Time per Sample = {0:.3e}s / {1:.1f}Hz".format(t_eval, 1./t_eval))
print("\n################################################")
print("Plotting Performance:")
# Alpha of the graphs:
plot_alpha = 0.8
# Plot the performance:
y_t_low = np.clip(1.2 * np.min(np.vstack((test_tau, hnn_tau)), axis=0), -np.inf, -0.01)
y_t_max = np.clip(1.5 * np.max(np.vstack((test_tau, hnn_tau)), axis=0), 0.01, np.inf)
y_m_low = np.clip(1.2 * np.min(np.vstack((test_m, hnn_m)), axis=0), -np.inf, -0.01)
y_m_max = np.clip(1.2 * np.max(np.vstack((test_m, hnn_m)), axis=0), 0.01, np.inf)
y_c_low = np.clip(1.2 * np.min(np.vstack((test_c, hnn_c)), axis=0), -np.inf, -0.01)
y_c_max = np.clip(1.2 * np.max(np.vstack((test_c, hnn_c)), axis=0), 0.01, np.inf)
y_g_low = np.clip(1.2 * np.min(np.vstack((test_g, hnn_g)), axis=0), -np.inf, -0.01)
y_g_max = np.clip(1.2 * np.max(np.vstack((test_g, hnn_g)), axis=0), 0.01, np.inf)
color_i = ["r", "b", "g", "k"]
ticks = np.array(divider)
ticks = (ticks[:-1] + ticks[1:]) / 2
fig = plt.figure(figsize=(24.0/1.54, 8.0/1.54), dpi=100)
fig.subplots_adjust(left=0.08, bottom=0.12, right=0.98, top=0.95, wspace=0.3, hspace=0.2)
fig.canvas.manager.set_window_title('Seed = {0}'.format(seed))
legend = [mp.patches.Patch(color=color_i[0], label="HNN"),
mp.patches.Patch(color="k", label="Ground Truth")]
# Plot Torque
ax0 = fig.add_subplot(2, 4, 1)
ax0.set_title("tau")
ax0.text(s="Joint 0", x=-0.35, y=.5, fontsize=12, fontweight="bold", rotation=90, horizontalalignment="center", verticalalignment="center", transform=ax0.transAxes)
ax0.set_ylabel("Torque [Nm]")
ax0.get_yaxis().set_label_coords(-0.2, 0.5)
ax0.set_ylim(y_t_low[0], y_t_max[0])
ax0.set_xticks(ticks)
ax0.set_xticklabels(test_labels)
ax0.vlines(divider, y_t_low[0], y_t_max[0], linestyles='--', lw=0.5, alpha=1.)
ax0.set_xlim(divider[0], divider[-1])
ax1 = fig.add_subplot(2, 4, 5)
ax1.text(s="Joint 1", x=-.35, y=0.5, fontsize=12, fontweight="bold", rotation=90,
horizontalalignment="center", verticalalignment="center", transform=ax1.transAxes)
ax1.text(s="(a)", x=.5, y=-0.25, fontsize=12, fontweight="bold", horizontalalignment="center",
verticalalignment="center", transform=ax1.transAxes)
ax1.set_ylabel("Torque [Nm]")
ax1.get_yaxis().set_label_coords(-0.2, 0.5)
ax1.set_ylim(y_t_low[1], y_t_max[1])
ax1.set_xticks(ticks)
ax1.set_xticklabels(test_labels)
ax1.vlines(divider, y_t_low[1], y_t_max[1], linestyles='--', lw=0.5, alpha=1.)
ax1.set_xlim(divider[0], divider[-1])
# ax0.legend(handles=legend, bbox_to_anchor=(0.0, 1.0), loc='upper left', ncol=1, framealpha=1.)
# Plot Ground Truth Torque:
ax0.plot(test_tau[:, 0], color="k")
ax1.plot(test_tau[:, 1], color="k")
# Plot DeLaN Torque:
ax0.plot(hnn_tau[:, 0], color=color_i[0], alpha=plot_alpha)
ax1.plot(hnn_tau[:, 1], color=color_i[0], alpha=plot_alpha)
# Plot Mass Torque
ax0 = fig.add_subplot(2, 4, 2)
ax0.set_title("H(q) * q_ddot")
ax0.set_ylabel("Torque [Nm]")
ax0.set_ylim(y_m_low[0], y_m_max[0])
ax0.set_xticks(ticks)
ax0.set_xticklabels(test_labels)
ax0.vlines(divider, y_m_low[0], y_m_max[0], linestyles='--', lw=0.5, alpha=1.)
ax0.set_xlim(divider[0], divider[-1])
ax1 = fig.add_subplot(2, 4, 6)
ax1.text(s="(b)", x=.5, y=-0.25, fontsize=12, fontweight="bold", horizontalalignment="center",
verticalalignment="center", transform=ax1.transAxes)
ax1.set_ylabel("Torque [Nm]")
ax1.set_ylim(y_m_low[1], y_m_max[1])
ax1.set_xticks(ticks)
ax1.set_xticklabels(test_labels)
ax1.vlines(divider, y_m_low[1], y_m_max[1], linestyles='--', lw=0.5, alpha=1.)
ax1.set_xlim(divider[0], divider[-1])
# Plot Ground Truth Inertial Torque:
ax0.plot(test_m[:, 0], color="k")
ax1.plot(test_m[:, 1], color="k")
# Plot DeLaN Inertial Torque:
ax0.plot(hnn_m[:, 0], color=color_i[0], alpha=plot_alpha)
ax1.plot(hnn_m[:, 1], color=color_i[0], alpha=plot_alpha)
# Plot Coriolis Torque
ax0 = fig.add_subplot(2, 4, 3)
ax0.set_title("c(q, q_dot)")
ax0.set_ylabel("Torque [Nm]")
ax0.set_ylim(y_c_low[0], y_c_max[0])
ax0.set_xticks(ticks)
ax0.set_xticklabels(test_labels)
ax0.vlines(divider, y_c_low[0], y_c_max[0], linestyles='--', lw=0.5, alpha=1.)
ax0.set_xlim(divider[0], divider[-1])
ax1 = fig.add_subplot(2, 4, 7)
ax1.text(s="(c)", x=.5, y=-0.25, fontsize=12, fontweight="bold", horizontalalignment="center",
verticalalignment="center", transform=ax1.transAxes)
ax1.set_ylabel("Torque [Nm]")
ax1.set_ylim(y_c_low[1], y_c_max[1])
ax1.set_xticks(ticks)
ax1.set_xticklabels(test_labels)
ax1.vlines(divider, y_c_low[1], y_c_max[1], linestyles='--', lw=0.5, alpha=1.)
ax1.set_xlim(divider[0], divider[-1])
# Plot Ground Truth Coriolis & Centrifugal Torque:
ax0.plot(test_c[:, 0], color="k")
ax1.plot(test_c[:, 1], color="k")
# Plot DeLaN Coriolis & Centrifugal Torque:
ax0.plot(hnn_c[:, 0], color=color_i[0], alpha=plot_alpha)
ax1.plot(hnn_c[:, 1], color=color_i[0], alpha=plot_alpha)
# Plot Gravity
ax0 = fig.add_subplot(2, 4, 4)
ax0.set_title("g(q)")
ax0.set_ylabel("Torque [Nm]")
ax0.set_ylim(y_g_low[0], y_g_max[0])
ax0.set_xticks(ticks)
ax0.set_xticklabels(test_labels)
ax0.vlines(divider, y_g_low[0], y_g_max[0], linestyles='--', lw=0.5, alpha=1.)
ax0.set_xlim(divider[0], divider[-1])
ax1 = fig.add_subplot(2, 4, 8)
ax1.text(s="(d)", x=.5, y=-0.25, fontsize=12, fontweight="bold", horizontalalignment="center",
verticalalignment="center", transform=ax1.transAxes)
ax1.set_ylabel("Torque [Nm]")
ax1.set_ylim(y_g_low[1], y_g_max[1])
ax1.set_xticks(ticks)
ax1.set_xticklabels(test_labels)
ax1.vlines(divider, y_g_low[1], y_g_max[1], linestyles='--', lw=0.5, alpha=1.)
ax1.set_xlim(divider[0], divider[-1])
# Plot Ground Truth Gravity Torque:
ax0.plot(test_g[:, 0], color="k")
ax1.plot(test_g[:, 1], color="k")
# Plot DeLaN Gravity Torque:
ax0.plot(hnn_g[:, 0], color=color_i[0], alpha=plot_alpha)
ax1.plot(hnn_g[:, 1], color=color_i[0], alpha=plot_alpha)
#fig.savefig(f"figures/jax_HNN_{model_id}_{hyper['dataset']}_Performance.pdf", format="pdf")
#fig.savefig(f"figures/jax_HNN_{model_id}_{hyper['dataset']}_Performance.png", format="png")
if render:
plt.show()
print("\n################################################\n\n\n")