diff --git "a/Projekty/Projekt1/Pawlikowski_Szmajdzi\305\204ski/Check1_EDA.ipynb" "b/Projekty/Projekt1/Pawlikowski_Szmajdzi\305\204ski/Check1_EDA.ipynb"
new file mode 100644
index 000000000..8c2ff2202
--- /dev/null
+++ "b/Projekty/Projekt1/Pawlikowski_Szmajdzi\305\204ski/Check1_EDA.ipynb"
@@ -0,0 +1,1683 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "from pandas_profiling import ProfileReport\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "\n",
+ "math_students = pd.read_csv('student/student-mat.csv', sep = ';')\n",
+ "por_students = pd.read_csv('student/student-por.csv', sep = ';')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " school | \n",
+ " sex | \n",
+ " age | \n",
+ " address | \n",
+ " famsize | \n",
+ " Pstatus | \n",
+ " Medu | \n",
+ " Fedu | \n",
+ " Mjob | \n",
+ " Fjob | \n",
+ " ... | \n",
+ " famrel | \n",
+ " freetime | \n",
+ " goout | \n",
+ " Dalc | \n",
+ " Walc | \n",
+ " health | \n",
+ " absences | \n",
+ " G1 | \n",
+ " G2 | \n",
+ " G3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " GP | \n",
+ " F | \n",
+ " 18 | \n",
+ " U | \n",
+ " GT3 | \n",
+ " A | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " at_home | \n",
+ " teacher | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 6 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " GP | \n",
+ " F | \n",
+ " 17 | \n",
+ " U | \n",
+ " GT3 | \n",
+ " T | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " at_home | \n",
+ " other | \n",
+ " ... | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " GP | \n",
+ " F | \n",
+ " 15 | \n",
+ " U | \n",
+ " LE3 | \n",
+ " T | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " at_home | \n",
+ " other | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 10 | \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 10 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " GP | \n",
+ " F | \n",
+ " 15 | \n",
+ " U | \n",
+ " GT3 | \n",
+ " T | \n",
+ " 4 | \n",
+ " 2 | \n",
+ " health | \n",
+ " services | \n",
+ " ... | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 2 | \n",
+ " 15 | \n",
+ " 14 | \n",
+ " 15 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " GP | \n",
+ " F | \n",
+ " 16 | \n",
+ " U | \n",
+ " GT3 | \n",
+ " T | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " other | \n",
+ " other | \n",
+ " ... | \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 6 | \n",
+ " 10 | \n",
+ " 10 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 33 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " school sex age address famsize Pstatus Medu Fedu Mjob Fjob ... \\\n",
+ "0 GP F 18 U GT3 A 4 4 at_home teacher ... \n",
+ "1 GP F 17 U GT3 T 1 1 at_home other ... \n",
+ "2 GP F 15 U LE3 T 1 1 at_home other ... \n",
+ "3 GP F 15 U GT3 T 4 2 health services ... \n",
+ "4 GP F 16 U GT3 T 3 3 other other ... \n",
+ "\n",
+ " famrel freetime goout Dalc Walc health absences G1 G2 G3 \n",
+ "0 4 3 4 1 1 3 6 5 6 6 \n",
+ "1 5 3 3 1 1 3 4 5 5 6 \n",
+ "2 4 3 2 2 3 3 10 7 8 10 \n",
+ "3 3 2 2 1 1 5 2 15 14 15 \n",
+ "4 4 3 2 1 2 5 4 6 10 10 \n",
+ "\n",
+ "[5 rows x 33 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "math_students.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " Medu | \n",
+ " Fedu | \n",
+ " traveltime | \n",
+ " studytime | \n",
+ " failures | \n",
+ " famrel | \n",
+ " freetime | \n",
+ " goout | \n",
+ " Dalc | \n",
+ " Walc | \n",
+ " health | \n",
+ " absences | \n",
+ " G1 | \n",
+ " G2 | \n",
+ " G3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ " 395.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 16.696203 | \n",
+ " 2.749367 | \n",
+ " 2.521519 | \n",
+ " 1.448101 | \n",
+ " 2.035443 | \n",
+ " 0.334177 | \n",
+ " 3.944304 | \n",
+ " 3.235443 | \n",
+ " 3.108861 | \n",
+ " 1.481013 | \n",
+ " 2.291139 | \n",
+ " 3.554430 | \n",
+ " 5.708861 | \n",
+ " 10.908861 | \n",
+ " 10.713924 | \n",
+ " 10.415190 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.276043 | \n",
+ " 1.094735 | \n",
+ " 1.088201 | \n",
+ " 0.697505 | \n",
+ " 0.839240 | \n",
+ " 0.743651 | \n",
+ " 0.896659 | \n",
+ " 0.998862 | \n",
+ " 1.113278 | \n",
+ " 0.890741 | \n",
+ " 1.287897 | \n",
+ " 1.390303 | \n",
+ " 8.003096 | \n",
+ " 3.319195 | \n",
+ " 3.761505 | \n",
+ " 4.581443 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 15.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 3.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 16.000000 | \n",
+ " 2.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 0.000000 | \n",
+ " 8.000000 | \n",
+ " 9.000000 | \n",
+ " 8.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 17.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 18.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ " 5.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 8.000000 | \n",
+ " 13.000000 | \n",
+ " 13.000000 | \n",
+ " 14.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 22.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 75.000000 | \n",
+ " 19.000000 | \n",
+ " 19.000000 | \n",
+ " 20.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age Medu Fedu traveltime studytime failures \\\n",
+ "count 395.000000 395.000000 395.000000 395.000000 395.000000 395.000000 \n",
+ "mean 16.696203 2.749367 2.521519 1.448101 2.035443 0.334177 \n",
+ "std 1.276043 1.094735 1.088201 0.697505 0.839240 0.743651 \n",
+ "min 15.000000 0.000000 0.000000 1.000000 1.000000 0.000000 \n",
+ "25% 16.000000 2.000000 2.000000 1.000000 1.000000 0.000000 \n",
+ "50% 17.000000 3.000000 2.000000 1.000000 2.000000 0.000000 \n",
+ "75% 18.000000 4.000000 3.000000 2.000000 2.000000 0.000000 \n",
+ "max 22.000000 4.000000 4.000000 4.000000 4.000000 3.000000 \n",
+ "\n",
+ " famrel freetime goout Dalc Walc health \\\n",
+ "count 395.000000 395.000000 395.000000 395.000000 395.000000 395.000000 \n",
+ "mean 3.944304 3.235443 3.108861 1.481013 2.291139 3.554430 \n",
+ "std 0.896659 0.998862 1.113278 0.890741 1.287897 1.390303 \n",
+ "min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 \n",
+ "25% 4.000000 3.000000 2.000000 1.000000 1.000000 3.000000 \n",
+ "50% 4.000000 3.000000 3.000000 1.000000 2.000000 4.000000 \n",
+ "75% 5.000000 4.000000 4.000000 2.000000 3.000000 5.000000 \n",
+ "max 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 \n",
+ "\n",
+ " absences G1 G2 G3 \n",
+ "count 395.000000 395.000000 395.000000 395.000000 \n",
+ "mean 5.708861 10.908861 10.713924 10.415190 \n",
+ "std 8.003096 3.319195 3.761505 4.581443 \n",
+ "min 0.000000 3.000000 0.000000 0.000000 \n",
+ "25% 0.000000 8.000000 9.000000 8.000000 \n",
+ "50% 4.000000 11.000000 11.000000 11.000000 \n",
+ "75% 8.000000 13.000000 13.000000 14.000000 \n",
+ "max 75.000000 19.000000 19.000000 20.000000 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "math_students.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " Medu | \n",
+ " Fedu | \n",
+ " traveltime | \n",
+ " studytime | \n",
+ " failures | \n",
+ " famrel | \n",
+ " freetime | \n",
+ " goout | \n",
+ " Dalc | \n",
+ " Walc | \n",
+ " health | \n",
+ " absences | \n",
+ " G1 | \n",
+ " G2 | \n",
+ " G3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ " 649.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 16.744222 | \n",
+ " 2.514638 | \n",
+ " 2.306626 | \n",
+ " 1.568567 | \n",
+ " 1.930663 | \n",
+ " 0.221880 | \n",
+ " 3.930663 | \n",
+ " 3.180277 | \n",
+ " 3.184900 | \n",
+ " 1.502311 | \n",
+ " 2.280431 | \n",
+ " 3.536210 | \n",
+ " 3.659476 | \n",
+ " 11.399076 | \n",
+ " 11.570108 | \n",
+ " 11.906009 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.218138 | \n",
+ " 1.134552 | \n",
+ " 1.099931 | \n",
+ " 0.748660 | \n",
+ " 0.829510 | \n",
+ " 0.593235 | \n",
+ " 0.955717 | \n",
+ " 1.051093 | \n",
+ " 1.175766 | \n",
+ " 0.924834 | \n",
+ " 1.284380 | \n",
+ " 1.446259 | \n",
+ " 4.640759 | \n",
+ " 2.745265 | \n",
+ " 2.913639 | \n",
+ " 3.230656 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 15.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 16.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ " 10.000000 | \n",
+ " 10.000000 | \n",
+ " 10.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 17.000000 | \n",
+ " 2.000000 | \n",
+ " 2.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 3.000000 | \n",
+ " 1.000000 | \n",
+ " 2.000000 | \n",
+ " 4.000000 | \n",
+ " 2.000000 | \n",
+ " 11.000000 | \n",
+ " 11.000000 | \n",
+ " 12.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 18.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 2.000000 | \n",
+ " 2.000000 | \n",
+ " 0.000000 | \n",
+ " 5.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 2.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 6.000000 | \n",
+ " 13.000000 | \n",
+ " 13.000000 | \n",
+ " 14.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 22.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 4.000000 | \n",
+ " 3.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 5.000000 | \n",
+ " 32.000000 | \n",
+ " 19.000000 | \n",
+ " 19.000000 | \n",
+ " 19.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age Medu Fedu traveltime studytime failures \\\n",
+ "count 649.000000 649.000000 649.000000 649.000000 649.000000 649.000000 \n",
+ "mean 16.744222 2.514638 2.306626 1.568567 1.930663 0.221880 \n",
+ "std 1.218138 1.134552 1.099931 0.748660 0.829510 0.593235 \n",
+ "min 15.000000 0.000000 0.000000 1.000000 1.000000 0.000000 \n",
+ "25% 16.000000 2.000000 1.000000 1.000000 1.000000 0.000000 \n",
+ "50% 17.000000 2.000000 2.000000 1.000000 2.000000 0.000000 \n",
+ "75% 18.000000 4.000000 3.000000 2.000000 2.000000 0.000000 \n",
+ "max 22.000000 4.000000 4.000000 4.000000 4.000000 3.000000 \n",
+ "\n",
+ " famrel freetime goout Dalc Walc health \\\n",
+ "count 649.000000 649.000000 649.000000 649.000000 649.000000 649.000000 \n",
+ "mean 3.930663 3.180277 3.184900 1.502311 2.280431 3.536210 \n",
+ "std 0.955717 1.051093 1.175766 0.924834 1.284380 1.446259 \n",
+ "min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 \n",
+ "25% 4.000000 3.000000 2.000000 1.000000 1.000000 2.000000 \n",
+ "50% 4.000000 3.000000 3.000000 1.000000 2.000000 4.000000 \n",
+ "75% 5.000000 4.000000 4.000000 2.000000 3.000000 5.000000 \n",
+ "max 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 \n",
+ "\n",
+ " absences G1 G2 G3 \n",
+ "count 649.000000 649.000000 649.000000 649.000000 \n",
+ "mean 3.659476 11.399076 11.570108 11.906009 \n",
+ "std 4.640759 2.745265 2.913639 3.230656 \n",
+ "min 0.000000 0.000000 0.000000 0.000000 \n",
+ "25% 0.000000 10.000000 10.000000 10.000000 \n",
+ "50% 2.000000 11.000000 11.000000 12.000000 \n",
+ "75% 6.000000 13.000000 13.000000 14.000000 \n",
+ "max 32.000000 19.000000 19.000000 19.000000 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "por_students.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 649 entries, 0 to 648\n",
+ "Data columns (total 33 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 school 649 non-null object\n",
+ " 1 sex 649 non-null object\n",
+ " 2 age 649 non-null int64 \n",
+ " 3 address 649 non-null object\n",
+ " 4 famsize 649 non-null object\n",
+ " 5 Pstatus 649 non-null object\n",
+ " 6 Medu 649 non-null int64 \n",
+ " 7 Fedu 649 non-null int64 \n",
+ " 8 Mjob 649 non-null object\n",
+ " 9 Fjob 649 non-null object\n",
+ " 10 reason 649 non-null object\n",
+ " 11 guardian 649 non-null object\n",
+ " 12 traveltime 649 non-null int64 \n",
+ " 13 studytime 649 non-null int64 \n",
+ " 14 failures 649 non-null int64 \n",
+ " 15 schoolsup 649 non-null object\n",
+ " 16 famsup 649 non-null object\n",
+ " 17 paid 649 non-null object\n",
+ " 18 activities 649 non-null object\n",
+ " 19 nursery 649 non-null object\n",
+ " 20 higher 649 non-null object\n",
+ " 21 internet 649 non-null object\n",
+ " 22 romantic 649 non-null object\n",
+ " 23 famrel 649 non-null int64 \n",
+ " 24 freetime 649 non-null int64 \n",
+ " 25 goout 649 non-null int64 \n",
+ " 26 Dalc 649 non-null int64 \n",
+ " 27 Walc 649 non-null int64 \n",
+ " 28 health 649 non-null int64 \n",
+ " 29 absences 649 non-null int64 \n",
+ " 30 G1 649 non-null int64 \n",
+ " 31 G2 649 non-null int64 \n",
+ " 32 G3 649 non-null int64 \n",
+ "dtypes: int64(16), object(17)\n",
+ "memory usage: 167.4+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "por_students.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Cechy w ramce dotyczącej matematyki i portugalskiego wyglądają bardzo podobnie. W dalszej części zajmiemy się ramką o portugalskim, gdyż zawiera ona więcej rekordów. W modelu być może wkorzystamy łączoną ramkę danych z dodaną kolumną subject."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAAK7CAYAAABChdydAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACN9UlEQVR4nOz9fZxkZX3n/7/eghociYhoB4E4ZiXuohPRTNCsiRk1Jty4QffnEghBUBI0gUST+W4czWYlcdklWfE+MYFIgARBEmVhhRgJoUNMBAUk3MqCOIQZR0bldtBoBj+/P85prGm6p6v6pqpO9+v5ePSjqq5zqs7nmqm66tTnXDepKiRJkiRJkgbxuFEHIEmSJEmSuseEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFCRJkiRJ0sBMKEiSJEmSpIGZUJAkLYkkleQ5o45D0vhJsrptI3YddSySxkc/bUOSbUl+aJhxaXYmFCRJJNmY5DtJ9ppW/oX2i331iEKTNIbaNuNb7Yn91N8zRx2XpMXRfsZ/egzimEzyS71lVfXkqrpzVDFpRyYUJElTvgwcNfUgyRrgSaMLR9KY+0/tif3U31dGHZCkpWfPIvUyobBCJdmQ5EtJHkpyS5LXtuW7JDktydeTfDnJSb3djpI8JclHkmxJsjnJ/0iyy2hrI2mR/Dnw+p7HxwLnTD1I8sQk707yL0nuSfLHSXbr2f5f27bhK0ne2PvC068wJDkuyWeWsC6Shmxn5wjt+cW72/OLO4HDpj13h6uhSU5O8hdDroIkIMmfAz8I/N+299Fvtb8Hjk/yL8Dftfv9ZZKvJnkgyZVJnteWv7gt36XnNV+b5Ib2/uN6fot8I8kFSfacIY5TgJ8EPtTG8aG2/NEhlUnOSvJHSf663ecfk/xAkvcluS/JF5O8sOc1n5nk40m+1v7W+fUl+4dcIUworFxfovmAPgX4XeAvkuwN/DJwCHAg8CLgNdOedxawHXgO8ELgZ4BfQtJycBXw/Un+Q3sScCTQe0J/KvDDNO3Dc4B9gP8OkORg4P8DXgXsD4y8m6SkoTuL2c8Rfhl4dVu+FnjdCOKT1IeqOgb4F9peSMAF7aafAv4D8LPt47+m+c5/BnAdcG77/KuBh4FX9LzsLwAfbe//Gs1vjJ8CngncB/zhDHH8NvAPwEltL6iTZgn5COC/AXsB3wY+28azF/BXwHugSWQA/xf4Z5pzmFcCb03yszO8pvpkQmGFqqq/rKqvVNV3q+pjwO3AQTQfyPdX1aaquo/mBwQASSaAQ4G3VtXDVbUVeC/Njw5Jy8NUL4VXAbcCm9vyACcAv1FV91bVQ8D/5Huf/yOAP6uqm6rqYeDkoUYtaRT+T5L727+/ZufnCEcA76uqu6vqXuB/jShmSfN3cvv5/hZAVZ1ZVQ9V1bdpvvdfkOQp7b7n0Q6jTLI7TftwXrvtzcBvt783pp77ugUMpbiwqq6tqn8FLgT+tarOqapHgI/RJDIBfgx4elX9XlV9p52H4Qz8LbMgjn9ZoZK8HvhNYHVb9GSaLN4zgbt7du29/yzg8cCWJFNlj5u2j6Ru+3PgSuDZ9Ax3AJ5OM5/CtT2f/wBT3RmfCVzbs/9dSxumpDHwmqr6W4AkB9FctZztHGH6+YVthNQ9j36G256MpwD/heYc4bvtpr2AB2h6I/xTkl8B/jNwXVVNfe6fBVyYZOo5AI8AE/OM656e+9+a4fGTe477zCT392zfhaYXhObJhMIKlORZNNm4VwKfrapHklxP8+NgC7Bvz+779dy/m6Yb0V5VtX1I4Uoaoqq6K8mXaa4kHN+z6es0X8rPq6rNMzx1Czu2Fz84bfvD7DjB4w8sQriSxsdc5wi2EVK31BxlvwAcTjPEcSPNMOr7aH5PUFW3JLmLZih173AHaNqLN1bVP04/QB67qtRMcczX3cCXq2r/RXzNFc8hDyvTKpoP59cAkrwBeH677QLgLUn2SbIH8LapJ1XVFuDTwGlJvr+dUOXfJfmpoUYvaakdD7yiHbow5bs0icj3JnkGQNtOTI07vAA4LskBSZ4EvHPaa14P/OckT2onUjoeSctGH+cIFwC/nmTfJE8FNkx7ieuBI5M8PolzLEijdw/wQzvZvjtNEvEbNMnA/znDPh8F3gK8DPjLnvI/Bk5pL3KS5OlJDp9nHIP4HPBQkrcl2a2dLPb5SX5skV5/RTKhsAJV1S3AaTQTltwDrAGmMoRn0JwQ3AB8AbiUZoKlR9rtrweeANxCk4X8K2DvYcUuaelV1Zeq6poZNr0NuAO4KsmDwN8Cz22f89fA+2hmfr6jve31XuA7NG3O2bQTN0laVnZ2jnAG8Dc0k6FdB3xi2nN/B/h37fN+lx2vZkoavv8F/Ld2eMBMCb5zaIYubab5zF81wz7n0Uy8+HdV9fWe8vcDFwOfTvJQ+9wXzxLH+2nmV7gvyQfmU5Ep7ZwKr6aZXPrLNL0v/5Smd4XmKVWL2YtEy02SQ4A/rqpnjToWSZIkSdL4sIeCdtB2/zk0ya5J9qHptnzhqOOSJEmSJI0XeyhoB+3Y578H/j3NBGyXAG+pqgdHGpgkSZIkaayYUJAkSZIkSQNzyIMkSZIkSRrYrqMOAGCvvfaq1atXjzqMRz388MOsWrVq1GEsuuVYr5Vap2uvvfbrVfX0IYU0NvppK7r8nuhq7F2NG7obe79xr8S2ot9ziuX+fz+Ouhp7V+MGzyl2ZrmfUyyE9V5ZFnpOMRYJhdWrV3PNNTOtUDYak5OTrFu3btRhLLrlWK+VWqckdw0nmvHST1vR5fdEV2PvatzQ3dj7jXslthX9nlMs9//7cdTV2LsaN3hOsTPL/ZxiIaz3yrLQcwqHPEiSJEmSpIGZUJAkSZIkSQMzoSBJkiRJkgZmQkGSJEmSJA3MhIIkSZIkSRrYWKzyMC5Wb7gEgPVrtnNce38uG089bClDkiStAKv7/M6ZctbBK29ZK3XHbO/n2c6vPJdSryT7AecAE0ABp1fV+5OcDPwy8LV213dU1aXtc94OHA88Avx6Vf3NYsRy4+YH+v5NAL6XtTL11UMhyZlJtia5qadszySXJbm9vX1qW54kH0hyR5IbkrxoqYKXJEmStKxsB9ZX1QHAS4ATkxzQbntvVR3Y/k0lEw4AjgSeBxwM/FGSXUYRuLQS9Tvk4SyaD2ivDcDlVbU/cHn7GOAQYP/27wTgwwsPU9K4myXx+L+TfLFNLl6YZI+2fHWSbyW5vv3745EFLkmSxkZVbamq69r7DwG3Avvs5CmHA+dX1ber6svAHcBBSx+pJOhzyENVXZlk9bTiw4F17f2zgUngbW35OVVVwFVJ9kiyd1VtWZSIJY2rs4AP0XRTnHIZ8Paq2p7k94G307QTAF+qqgOHGqEkSeqM9vfHC4GrgZcCJyV5PXANTS+G+2iSDVf1PG0TsyQgkpxAc8GTiYkJJicnd3r8id2aoTr9muv1umLbtm3Lpi6DsN7zs5A5FCZ6kgRfpRnnBM0H+O6e/aY+1CYUpGVspsRjVX265+FVwOuGGpQkSeqkJE8GPg68taoeTPJh4F008yq8CzgNeOMgr1lVpwOnA6xdu7bWrVu30/0/eO5FnHZj/z+XNh6989frisnJSeb6t1mOrPf8LMqkjFVVSWqQ5wyaIRyGqQzkINnIcYi7X8sx62adOuWNwMd6Hj87yReAB4H/VlX/MJqwJEnSOEnyeJpkwrlV9QmAqrqnZ/sZwCfbh5uB/Xqevm9bJmkIFpJQuGdqKEOSvYGtbXlfH+pBM4TDcFzPKg/9ZiO7lIlcjlk369QNSX6bZpKlc9uiLcAPVtU3kvwo8H+SPK+qHpzhuQMlH7uckOlq7F2NG8Yn9kG61ML4xC1Jiy1JgI8At1bVe3rKe4dQvxaYmrPpYuCjSd4DPJNmHrfPDTFkaUVbSELhYuBY4NT29qKe8pOSnA+8GHjA+RO+Z9ClwcAlaNRtSY4DXg28sp1bhar6NvDt9v61Sb4E/DDNmMgdDJp87HJCpquxdzVuGJ/YB1mWDJplI8chbklaAi8FjgFuTHJ9W/YO4KgkB9IMedgIvAmgqm5OcgFwC83FixOr6pEhxyytWH0lFJKcRzMB415JNgHvpEkkXJDkeOAu4Ih290uBQ2lmWP0m8IZFjllSRyQ5GPgt4Keq6ps95U8H7q2qR5L8EM3VhDtHFKYkSRoTVfUZIDNsunQnzzkFOGXJgpI0q35XeThqlk2vnGHfAk5cSFCSumeWxOPbgScClzU9GLmqqt4MvAz4vST/BnwXeHNV3TuSwCVJkiTNy6JMyihJsyQePzLLvh+nmWxJkiRJUkc9btQBSJIkSZKk7jGhIEmSJEmSBmZCQZIkDU2SM5NsTXJTT9meSS5Lcnt7+9S2PEk+kOSOJDckedHoIpckSdOZUJAkScN0FnDwtLINwOVVtT9wefsY4BCaVWD2B04APjykGCVJUh9MKEiSpKGpqiuB6au6HA6c3d4/G3hNT/k51bgK2CPJ3kMJVJIkzclVHiRJ0qhNVNWW9v5XgYn2/j7A3T37bWrLtvSUkeQEmh4MTExMMDk5OecBt23b1td+46YLca9fs33G8ondZt42jvW5cfMDj96f2A0+eO5Fcz5nzT5PWcqQ5qUL7xdJ3WZCQZIkjY2qqiQ14HNOB04HWLt2ba1bt27O50xOTtLPfuOmC3Eft+GSGcvXr9nOaTc+9tRz49HrljiiwfXWYba4pxvHenTh/SKp2xzyIEmSRu2eqaEM7e3WtnwzsF/Pfvu2ZZIkaQyYUJAkSaN2MXBse/9Y4KKe8te3qz28BHigZ2iEJEkaMYc8SJKkoUlyHrAO2CvJJuCdwKnABUmOB+4Cjmh3vxQ4FLgD+CbwhqEHLEmSZmVCQZIkDU1VHTXLplfOsG8BJy5tRFJ3rJ5lforZnHXwqiWKRJIaDnmQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNzISCJEmSpLGRZL8kVyS5JcnNSd7Slu+Z5LIkt7e3T23Lk+QDSe5IckOSF422BtLKsaCEQpLfaD/kNyU5L8n3JXl2kqvbD/THkjxhsYKVJEmStOxtB9ZX1QHAS4ATkxwAbAAur6r9gcvbxwCHAPu3fycAHx5+yNLKNO9VHpLsA/w6cEBVfSvJBcCRNMs7vbeqzk/yx8DxLNKHetCZbTeeethiHLZzZvt3Wr9mO8fNsm2l/ltp8SQ5E3g1sLWqnt+W7Ql8DFgNbASOqKr7kgR4P0178U3guKq6bhRxq3+Dti22K5Kk+aiqLcCW9v5DSW4F9gEOp1l2FuBsYBJ4W1t+TrsyzFVJ9kiyd/s6kpbQQpeN3BXYLcm/AU+i+eC/AviFdvvZwMmYJZRWgrOADwHn9JRNXUk4NcmG9vHb2PFKwotp2ogXDzVaSZI09pKsBl4IXA1M9CQJvgpMtPf3Ae7uedqmtmyHhEKSE2h6MDAxMcHk5OROjz2xW5M079dcr9cV27ZtWzZ1GYT1np95JxSqanOSdwP/AnwL+DRwLXB/VU198qY+zI8x6AcaBvtAw+Af6qnXH6TxmO8xBrFYx9hZvbr64VmOH/yu1qmqrmy/9Ht5JUGSJM1LkicDHwfeWlUPNh0cG1VVSWqQ16uq04HTAdauXVvr1q3b6f4fPPciTrux/59LG4/e+et1xeTkJHP92yxH1nt+FjLk4ak0PwqeDdwP/CVwcL/PH/QDDczaXX82g36op15//ZrtfTce8z3GIBbrGDurV1cbwOX4wV9mdVrQlQQYPPnY1YQMjH/sgyYrx7kuU8bl33zQZPO4xC1JSyXJ42mSCedW1Sfa4numLkAk2RvY2pZvBvbrefq+bZmkJbaQIQ8/DXy5qr4GkOQTwEuBPZLs2vZS8MMsCZjflYT2eQMlH7uckBn32AdNVo5rorJ3Loj1ax7htM88vNP9hzEXxKDJ5rMOXjXW7xVJWoh2rqWPALdW1Xt6Nl0MHAuc2t5e1FN+UpLzaYZQPmCvR2k4FrLKw78AL0nypPZD/0rgFuAK4HXtPr0fdEkrzz3tFQS8kiBJkvr0UuAY4BVJrm//DqVJJLwqye00FzdPbfe/FLgTuAM4A/jVEcQsrUgLmUPh6iR/BVxHs7TLF2iuIl4CnJ/kf7RlH1mMQCV1klcSJEnSQKrqM0Bm2fzKGfYv4MQlDUrSjBa0ykNVvRN457TiO4GDFvK6kronyXk0EzDulWQTTdtwKnBBkuOBu4Aj2t0vpVky8g6aZSPfMPSAJUmSJC3IQpeNlCQAquqoWTZ5JUGSJElahkwoSJIkjYHVfUzOuX7N9kcn8RzGhKGSJO3MQiZllCRJkiRJK5QJBUmSJEmSNDATCpIkSZIkaWAmFCRJkiRJ0sCclFGSJI1UkucCH+sp+iHgvwN7AL8MfK0tf0dVXTrc6CRJ0mxMKEiSpJGqqtuAAwGS7AJsBi4E3gC8t6rePbroJEnSbBzyIEmSxskrgS9V1V2jDkSSJO2cPRQkSdI4ORI4r+fxSUleD1wDrK+q+6Y/IckJwAkAExMTTE5OznmQbdu29bXfMK1fs33OfSZ2+95+4xb/lNnq0Rt7r3GsR2+cs8U93TDq0U8cvcbxfS5peTGhIEmSxkKSJwA/B7y9Lfow8C6g2tvTgDdOf15VnQ6cDrB27dpat27dnMeanJykn/2G6bgNl8y5z/o12zntxub0bePR65Y4ovmZrR69sfcax3r01mG2uKcbRj36eY/0OuvgVWP3Ppe0vDjkQZIkjYtDgOuq6h6Aqrqnqh6pqu8CZwAHjTQ6SZK0AxMKkiRpXBxFz3CHJHv3bHstcNPQI5IkSbNyyIMkSRq5JKuAVwFv6in+gyQH0gx52DhtmyRJGjF7KEiSpJGrqoer6mlV9UBP2TFVtaaqfqSqfq6qtowyRknDkeTMJFuT3NRTdnKSzUmub/8O7dn29iR3JLktyc+OJmppZVpQQiHJHkn+KskXk9ya5MeT7JnksiS3t7dPXaxgJUmSJC17ZwEHz1D+3qo6sP27FCDJATSrwzyvfc4fJdllaJFKK9xCeyi8H/hUVf174AXArcAG4PKq2h+4vH0saYVK8tyeqwnXJ3kwyVt3dqVBkiStXFV1JXBvn7sfDpxfVd+uqi8Dd+AErtLQzDuhkOQpwMuAjwBU1Xeq6n6aD/XZ7W5nA69ZWIiSuqyqbpu6mgD8KPBN4MJ282OuNEiSJM3ipCQ3tEMipnpB7wPc3bPPprZM0hAsZFLGZwNfA/4syQuAa4G3ABM9Yxy/CkzM9OQkJwAnAExMTDA5OTnnAdev2T5QgP285kyvP7Fb/8ea7zEGsVjH2Fm9Bj3GuNi2bVtnY5/NcqxTj1cCX6qqu5KMOhZJktQdHwbeRTNJ67uA04A3DvICg/7+GOQ3AXT3fHq6ZX4uOivrPT8LSSjsCrwI+LWqujrJ+5k2vKGqKknN9OSqOh04HWDt2rW1bt26OQ943IZLBgpw49Fzv+ZMr79+zXZOu7G/f5r5HmMQi3WMndVr0GOMi8nJSfp573TJcqxTjyPpWRKO5krD64FrgPVVdd/0Jwz65d/lL4Nxj33QZOW41qU31n5OFodRj0GTzeP+XpGkxVZV90zdT3IG8Mn24WZgv55d923LZnqNgX5/fPDci/r+TQDdPZ+ebpmfi87Kes/PQhIKm4BNVXV1+/ivaBIK9yTZu6q2tOtHb13AMSQtE0meAPwc8Pa2qK8rDYN++Xf5y2DcYx80WTmuJ1a99egngTyMegyabD7r4FVj/V6RpMU29fuiffhaYGoFiIuBjyZ5D/BMYH/gcyMIUVqR5p1QqKqvJrk7yXOr6jaarsy3tH/HAqe2txctSqSSuu4Q4LqpKww7udIgSZJWsCTnAeuAvZJsAt4JrEtyIM2FiI3AmwCq6uYkF9D8BtkOnFhVj4wgbGlFWkgPBYBfA85trzzeCbyBZqLHC5IcD9wFHLHAY0haHo6iZ7jDTq40SJKkFayqjpqh+CM72f8U4JSli0jSbBaUUKiq64G1M2x65UJeV9LykmQV8CraqwmtP5jpSoMkSZKkblhoDwVJmlNVPQw8bVrZMSMKR5IkSdIieNyoA5AkSZIkSd1jQkGSJEmSJA3MhIIkSZIkSRqYCQVJkiRJkjQwEwqSJEmSJGlgJhQkSZIkSdLATChIkiRJkqSBmVCQJEmSJEkD23XUAUiSJCXZCDwEPAJsr6q1SfYEPgasBjYCR1TVfaOKUZIk7cgeCpIkaVy8vKoOrKq17eMNwOVVtT9weftYkiSNCXsoSNISW73hkr72W79mO8e1+2489bClDEnqisOBde39s4FJ4G2jCkaSJO3IhIIkSRoHBXw6SQF/UlWnAxNVtaXd/lVgYqYnJjkBOAFgYmKCycnJOQ+2bdu2vvYbpvVrts+5z8Ru39tv3OKfMls9emPvNY716I1ztrinG0Y9+omj1zi+zyUtLyYUJEnSOPiJqtqc5BnAZUm+2LuxqqpNNjxGm3w4HWDt2rW1bt26OQ82OTlJP/sN03F99GZav2Y7p93YnL5tPHrdEkc0P7PVozf2XuNYj946zBb3dMOoRz/vkV5nHbxq7N7nkpYX51CQJEkjV1Wb29utwIXAQcA9SfYGaG+3ji5CSZI0nT0UJEnSSCVZBTyuqh5q7/8M8HvAxcCxwKnt7UWji1LSsCQ5E3g1sLWqnt+WzbjqS5IA7wcOBb4JHFdV140i7uXixs0PDNwbxrmfVq4F91BIskuSLyT5ZPv42UmuTnJHko8lecLCw5TUZUk2JrkxyfVJrmnL9kxyWZLb29unjjpOSSMzAXwmyT8DnwMuqapP0SQSXpXkduCn28eSlr+zgIOnlc226sshwP7t3wnAh4cUoyQWZ8jDW4Bbex7/PvDeqnoOcB9w/CIcQ1L3uRycpBlV1Z1V9YL273lVdUpb/o2qemVV7V9VP11V9446VklLr6quBKZ/3g+nWe2F9vY1PeXnVOMqYI+poVKSlt6Chjwk2Rc4DDgF+M22y9ErgF9odzkbOBkzhZIey+XgJElSv2Zb9WUf4O6e/Ta1ZVuYZtAVYfpd4WPKcllRY9B6w/Ko+0pdFWWh9V7oHArvA34L2L19/DTg/qqaegdOfaAfYz5LPC31G3vq9Qf5EM33GINYrGPsrF5d/fAsxw/+cqwTQ1wObhz//fr93I/7cnDLYSk4GHw5OJeCk6TxsrNVX+Z43kArwnzw3Iv6WuFjyjiuWDIfg9Yblkfdx3H1n2FYaL3nnVBIMjVRyrVJBo5gPks8DTw5yIBv7KnX73d5oIUcYxCLdYyd1aurjcBy/OAvxzoxxOXgxvHfr9/P/bgvB7ccloKDwZeDcyk4SRoL9yTZu6q2TFv1ZTOwX89++7ZlkoZgIXMovBT4uSQbgfNphjq8n2bc0tTZmR9oSS4HJ0mSFmpq1RfYcdWXi4HXp/ES4IGeHpCSlti8EwpV9faq2reqVgNHAn9XVUcDVwCva3dziSdphUuyKsnuU/dploO7idlPDCRJ0gqW5Dzgs8Bzk2xKcjyzr/pyKXAncAdwBvCrIwhZWrEWOofCTN4GnJ/kfwBfAD6yBMeQ1B0TwIXNnK3sCny0qj6V5PPABe1Jwl3AESOMUZIkjYmqOmqWTa+cYd8CTlzaiCTNZlESClU1STNDO1V1J013ZkmaahNeMEP5N5jhxECSJElSNyxkDgVJkiRJkrRCmVCQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNzISCJEmSJEkamAkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBmZCQZIkSZIkDcyEgiRJGqkk+yW5IsktSW5O8pa2/OQkm5Nc3/4dOupYJUnS9+w66gDUTas3XDLQ/htPPWyJIpEkLQPbgfVVdV2S3YFrk1zWbntvVb17hLFJkqRZmFCQJEkjVVVbgC3t/YeS3ArsM9qoJEnSXOadUEiyH3AOMAEUcHpVvT/JnsDHgNXARuCIqrpv4aFK6qKdtBUnA78MfK3d9R1VdeloopQ0LpKsBl4IXA28FDgpyeuBa2h6MTzmnCLJCcAJABMTE0xOTs55nG3btvW13zCtX7N9zn0mdvvefuMW/5TZ6tEbe69xrEdvnLPFPd0w6tFPHL3G8X2+UEk2Ag8BjwDbq2qtvz+k0VlID4XZuiceB1xeVacm2QBsAN628FAldZRdmSX1JcmTgY8Db62qB5N8GHgXTTLyXcBpwBunP6+qTgdOB1i7dm2tW7duzmNNTk7Sz37DdFwfwwnXr9nOaTc2p28bj163xBHNz2z16I291zjWo7cOs8U93TDq0c97pNdZB68au/f5Inl5VX295/EG/P0hjcS8J2Wsqi1VdV17/yFgqnvi4cDZ7W5nA69ZYIySOmwnbYUkPSrJ42mSCedW1ScAquqeqnqkqr4LnAEcNMoYJY0tf39II7IocyhM65440Y6FBPgqTTfnmZ4zcPfEQbt5DdrFa+r1++3atpBjDGKxjrGzei11PZaqu91y7Mq3HOs0ZRhdmcfx36/fz8u4d2VeDt2YYfCuzHZjXnpJAnwEuLWq3tNTvnfPOcVrgZtGEZ+ksVLAp5MU8CdtD6Ul+f0xyG8CGN/vvUENWm9YHnVfbt+t/VpovRecUJihe+Kj26qq2g/7Y8yne+Kg3bwG7Xo29fr9dm1byDEGsVjH2Fm9lroeS9UNcBy7rC7UcqwTDK8r8zj++/X7eRn3rszLoRszDN6V2W7MQ/FS4BjgxiTXt2XvAI5KciBNO7EReNMogpM0Vn6iqjYneQZwWZIv9m5czN8fHzz3or5/E8D4fu8NatB6w/Ko+zieQw7DQuu9oITCTN0TgXumrigk2RvYupBjSOq+2boy92w/A/jkiMKTNGJV9RkgM2xyolZJO6iqze3t1iQX0gyF8veHNCLznkNhtu6JwMXAse39Y4GL5h+epK7bWVfmnt3syixJknYqyap2gmeSrAJ+hub8wd8f0ogspIfCbN0TTwUuSHI8cBdwxIIilNR1dmWWJEmLYQK4sB1ivSvw0ar6VJLP4+8PaSTmnVDYSfdEgFfO93UlLS92ZZYkSYuhqu4EXjBD+Tfw94c0EvMe8iBJkiRJklYuEwqSJEmSJGlgJhQkSZIkSdLATChIkiRJkqSBmVCQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNbNdRByBJkiRJ0ijduPkBjttwyUDP2XjqYUsUTXfYQ0GSJEmSJA3MhIIkSZIkSRqYCQVJkiRJkjQwEwqSJEmSJGlgJhQkSZIkSdLATChIkiRJkqSBmVCQJEmSJEkD23WpXjjJwcD7gV2AP62qU5fqWFqeVvexDuz6NdsfXS/WdWC7x3ZCUj9sKyTNxXZCavTzG6rXWQevWtDxliShkGQX4A+BVwGbgM8nubiqblmK40nqnqVqJ27c/MCjSaZ+mYySxte4tBW2E9L48reHNDpL1UPhIOCOqroTIMn5wOGAH2qNlUEzePM5oRx2lrBDbCck9cO2QtJcbCekEVmqORT2Ae7uebypLZOkKbYTkvphWyFpLrYT0oikqhb/RZPXAQdX1S+1j48BXlxVJ/XscwJwQvvwucBtix7I/O0FfH3UQSyB5VivlVqnZ1XV04cRzFLpp51oywdtK7r8nuhq7F2NG7obe79xr4i2Yp7nFMv9/34cdTX2rsYNnlOs5HOKhbDeK8uCzimWasjDZmC/nsf7tmWPqqrTgdOX6PgLkuSaqlo76jgW23Ksl3XqtDnbCRi8rejyv19XY+9q3NDd2Lsa9zwtyTlFV/8Nuxo3dDf2rsYN3Y59QJ5TLCLrvbIstN5LNeTh88D+SZ6d5AnAkcDFS3QsSd1kOyGpH7YVkuZiOyGNyJL0UKiq7UlOAv6GZumWM6vq5qU4lqRusp2Q1A/bCklzsZ2QRmephjxQVZcCly7V6y+xsRyKsQiWY72sU4ctUTvR5X+/rsbe1bihu7F3Ne55sa3YQVfjhu7G3tW4oduxD8R2YlFZ75VlQfVekkkZJUmSJEnS8rZUcyhIkiRJkqRlbMUnFJKcmWRrkpumlf9aki8muTnJH4wqvvmYqU5JDkxyVZLrk1yT5KBRxjioJPsluSLJLe3/yVva8j2TXJbk9vb2qaOOtV87qdP/bt97NyS5MMkeIw61M5IcnOS2JHck2TDqePo1Wzs07mZ7D4+7JN+X5HNJ/rmN+3dHHdOgkuyS5AtJPjnqWLrGdmK4utpOQPfbCtuJ+evq522huvx5XYiuf9YXaqFtxYpPKABnAQf3FiR5OXA48IKqeh7w7hHEtRBnMa1OwB8Av1tVBwL/vX3cJduB9VV1APAS4MQkBwAbgMuran/g8vZxV8xWp8uA51fVjwD/D3j7CGPsjCS7AH8IHAIcABzV/nt2wVk89jPbBbO9h8fdt4FXVNULgAOBg5O8ZLQhDewtwK2jDqJrbCdGoqvtBHS/rbCdmL+z6ObnbaG6/HldiK5/1hdqQW3Fik8oVNWVwL3Tin8FOLWqvt3us3XogS3ALHUq4Pvb+08BvjLUoBaoqrZU1XXt/Ydo3vT70CR+zm53Oxt4zUgCnIfZ6lRVn66q7e1uV9Gspay5HQTcUVV3VtV3gPNp3h9jb5bP7NjbyedyrFVjW/vw8e1fZyYUSrIvcBjwp6OOpYNsJ4asq+0EdLutsJ1YmK5+3haqy5/XhejyZ32hFqOtWPEJhVn8MPCTSa5O8vdJfmzUAS2CtwL/O8ndND0uOnvVO8lq4IXA1cBEVW1pN30VmBhVXAsxrU693gj89dAD6qZ9gLt7Hm9iBXwJjoudvIfHUtu973pgK3BZVXUi7tb7gN8CvjviOLrIdmKEutZOQKfbivdhO6EF6OLndSE6/FlfqPexwLbChMLMdgX2pOnq81+BC5JktCEt2K8Av1FV+wG/AXxkxPHMS5InAx8H3lpVD/Zuq2bJks5lE2erU5Lfpul6du6oYpP6sbPP5biqqkfaIWD7Agclef6IQ+pLklcDW6vq2lHHIg2ii+0EdLOtsJ3QQnX187oQXfysL9RitRUmFGa2CfhE2/3lczQZm71GHNNCHQt8or3/lzTdPjslyeNpGrdzq2qqLvck2bvdvjdNVrEzZqkTSY4DXg0cXa7t2q/NwH49j/dty7SEZnsPd0VV3Q9cQXfGyr4U+LkkG2m6678iyV+MNqROsZ0Yga63E9C5tsJ2QvO2HD6vC9Gxz/pCLUpbYUJhZv8HeDlAkh8GngB8fZQBLYKvAD/V3n8FcPsIYxlY20PkI8CtVfWenk0X0yRLaG8vGnZs8zVbnZIcTNP16Oeq6pujiq+DPg/sn+TZSZ4AHEnz/tAS2cnncqwleXra1VOS7Aa8CvjiSIPqU1W9var2rarVNO/xv6uqXxxxWF1iOzFkXW0noLtthe2E5qvLn9eF6OpnfaEWq61Y8QmFJOcBnwWem2RTkuOBM4EfapeKOR84tktXiWep0y8DpyX5Z+B/AieMMsZ5eClwDE3m7Pr271DgVOBVSW4Hfrp93BWz1elDwO7AZW3ZH480yo5oJ7I8CfgbmkmELqiqm0cbVX9m+cx2wWzv4XG3N3BFkhtofmBeVlUuq7YC2E6MRFfbCbCtWLE6/HlbqC5/XhfCz/oCpEO/kyVJkiRJ0phY8T0UJEmSJEnS4EwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBmZCQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFESSjUl+ep7P/eMkv7PYMUlaGkmem+T6JA8l+fWd7PeDSbYl2aV9PJnkl4YXqaRx0G+bMYQ41iXZNKrjS2oMs01IcnSSTy/lMbRwu446AC1MkpOB51TVLw7hWMcBv1RVPzFVVlVvXurjSlpUvwVcUVUH7mynqvoX4MlDiUjSOOurzZC0YixJm5BkNfBl4PFVtR2gqs4Fzl3M42jx2UNBklaWZwE3D+tgafhdI3XXUNqMJF7kkrph1jZhqlejVhZP8jokyduSbG67GN2W5DDgHcDPt12T/7ndb4chDElOTvIXPY+PSXJXkm8k+e2e8h9I8s0kT+spe1GSryVZA/wx8OPtse5vt5+V5H+099cl2ZTkt5JsTbIlyWuSHJrk/yW5N8k7el77cUk2JPlSG8sFSfZcsn9AaYVL8nfAy4EPtZ/jtyT5QpIHk9zd9nia2nd1kprpJH+GNmWHfdvhEack+Ufgm8APJfn3SS5r24HbkhzR8/xDk9zStm2bk/x/S/jPIKlP82wz3tBuuy/Jm5P8WJIbktyf5EM9+x+X5B+TvDfJN4CTkzwxybuT/EuSe9IMq9xt+DWXNJMZ2oSPJvlwkkuTPAy8PMkzk3y8/f3w5d5hEXOc+1/Z3t7fvvaPt+3EZ3qeX0l+Ncnt7TnDu5L8uyT/1LZLFyR5Qs/+r04zPOP+dp8fGcI/04pjQqEjkjwXOAn4saraHfhZ4IvA/wQ+VlVPrqoX9PE6BwAfBo4Bngk8DdgXoKq+CkwCR/Q85Rjg/Kq6EXgz8Nn2WHvMcogfAL4P2Af478AZwC8CPwr8JPA7SZ7d7vtrwGuAn2pjuQ/4w7nqIGl+quoVwD8AJ1XVk4F/Bl4P7AEcBvxKktcs0uGOAU4Adge+BlwGfBR4BnAk8EdtewTwEeBNbdv2fODvFikGSQswzzbjxcD+wM8D7wN+G/hp4HnAEUl+atq+dwITwCnAqcAPAwcCz+F75xKSxsAMbcJ3gF+g+fzuDvwT8H9p2op9gFcCb03ys+1L7Ozc/2Xt7R7tb43PzhLGz9L8rngJzfCL02l+a+xHcw5xFECSFwJnAm+i+b3zJ8DFSZ64oH8EPYYJhe54BHgicECSx1fVxqr60jxe53XAJ6vqyqr6NvA7wHd7tp9N86Gc6rZ0FPDnA7z+vwGnVNW/AecDewHvr6qHqupm4BZgKvHxZuC3q2pTG8vJwOtmuiIqafFV1WRV3VhV362qG4DzaL7kF8NZVXVzOw7yYGBjVf1ZVW2vqi8AHwf+S7vvv9G0bd9fVfdV1XWLFIOkRdRnm/GuqvrXqvo08DBwXlVtrarNND9EXtiz71eq6oNtO/GvNEnI36iqe6vqIZqLJkcuecUkLcRFVfWPVfVdYA3w9Kr6var6TlXdSXNxcepzvBjn/n9QVQ+2vytuAj5dVXdW1QPAX/O9NuYE4E+q6uqqeqSqzga+TZOI0CIyodARVXUH8FaaD97WJOcneeY8XuqZwN09r/sw8I2e7RfRnNg/G3gV8EBVfW6A1/9GVT3S3v9We3tPz/Zv8b2J3p4FXNh2Q7ofuJUmcTIxwPEkzVOSFye5ou2W+ADNF/1ei/Tyd/fcfxbw4qnPevt5P5qmRxPA/w84FLgryd8n+fFFikHSIuqzzZj+nT/bOQDs2E48HXgScG1PO/GptlzS+Jr+ff/Mad/37+B75/aLce7fbxvzLGD9tFj2o/ktpEVkQqFDquqj7QoLzwIK+P32drqHab6Up/xAz/0tNB8mAJI8iaYb0NQx/hW4gKaXwjHs2DthpmMtxN3AIVW1R8/f97VXMSQtvY8CFwP7VdVTaOZJSR/P21kbM6W3vbgb+Ptpn/UnV9WvAFTV56vqcJrhEP+Hpg2SNH7m22bMpred+DrNj4Hn9bQTT2m7VUsaX9O/77887ft+96o6tGf7bOf+S/E745Rpx3pSVZ23yMdZ8UwodESaNV9f0Y77+VeaL93v0mTlVmfHWdSvB45M8vgka2mGOUz5K+DVSX6inbTk93js++Ac4Djg59gxoXAPsG/vZCcL9MfAKUme1dbx6UkOX6TXljS33YF7q+pfkxxEMw6yH9cDL0vyg0meArx9jv0/CfxwmglhH9/+/ViS/5DkCWnWmX5KO1TqQXYchiVpfMy3zZhT2136DOC9SZ4BkGSfnrHXksbf54CH0kwkv1uSXZI8P8mPtdt3du7/NZrv/x9apFjOAN7c9qxKklVJDkuy+yK9vlomFLrjiTSTFX0d+CrNlby3A3/Zbv9Gkqlxx78D/DuaiU5+l+aKAgDteKMT27It7T6beg9UVf9I84G+rqru6tn0dzTLxHw1ydcXoU7vp7nS8ekkDwFX0UzQJGk4fhX4vfbz99/ps2dAVV0GfAy4AbiWJmGws/0fAn6GZgzlV2jasN+nadeg6Q21McmDNF2ojx64JpKGYV5txgDeBtwBXNW2B38LPHeRjyFpibTDnl9NM7Hql2l+t/wp8JR2l1nP/avqmzSTO/5jO0RhQXMdVNU1wC8DH6L5vXMHzQVTLbJULXbvEi0HaZaF+WhV/emoY5EkSZIkjR8TCnqMtlvSZTRjJB8adTySJEmSpPHjkAftIMnZNF0M32oyQZIkSZI0G3soSJIkSZKkgdlDQZIkSZIkDcyEgiRJGook+yW5IsktSW5O8pa2fM8klyW5vb19alueJB9IckeSG5K8aLQ1kCRJvcZiyMNee+1Vq1evnnO/hx9+mFWrVi19QGPGeq8s/dT72muv/XpVPX1IIY2NftoK3zcri/XeuXFrK5LsDexdVde1a4FfC7yGZimve6vq1CQbgKdW1duSHAr8GnAozdJi76+qnS4vvNzPKboaN3Q39q7GDZ5T7MxyP6foauxdjRu6G/uCzymqaqd/wH7AFcAtwM3AW9ryPWlWAri9vX1qWx7gAzRrfd4AvGiuY/zoj/5o9eOKK67oa7/lxnqvLP3UG7im5vhcLce/ftoK3zcri/XeuXFvK4CLgFcBt9EkGgD2Bm5r7/8JcFTP/o/uN9vfcj+n6GrcVd2NvatxV3lOsbO/5X5O0dXYuxp3VXdjX+g5RT9DHrYD66vqAOAlwIlJDgA2AJdX1f7A5e1jgEOA/du/E4AP93EMSZK0giRZDbwQuBqYqKot7aavAhPt/X2Au3uetqktkyRJY2DXuXZov+C3tPcfSnIrzZf54cC6drezgUngbW35OW0W46okeyTZu+dEQZIkrWBJngx8nGaJ4geTPLqtqirJQOMxk5xAcxGDiYkJJicn53zOtm3b+tpv3HQ1buhu7F2NG7odu6RumDOh0GuBVxNMKEiStMIleTxNMuHcqvpEW3zP1MWHdp6FrW35Zpqhl1P2bct2UFWnA6cDrF27ttatWzdnHJOTk/Sz37jpatzQ3di7Gjd0O3ZJ3dB3QsGrCaNjvVeWlVpvSctfmpOHjwC3VtV7ejZdDBwLnNreXtRTflKS82kmZXzAHo+SJI2PvhIKXk0YrQ+eexGnfebhvvffeOphSxjN8KzU/++VWu/FcuPmBzhuwyUDPWe5fGakDngpcAxwY5Lr27J30CQSLkhyPHAXcES77VKaFR7uAL4JvGGo0WrFWt3zPbJ+zfa+vlf8LpH6t3qWz9Rsnzc/X+NrzoSCVxMk9SPJ9wFXAk+kaVv+qqremeTZwPnA02iWiDumqr6T5InAOcCPAt8Afr6qNo4keElDUVWfoVkNaiavnGH/Ak5c0qAkSdK89bPKw9TVhFckub79O5QmkfCqJLcDP90+huZqwp00VxPOAH518cOWNIa+Dbyiql4AHAgcnOQlwO8D762q5wD3Ace3+x8P3NeWv7fdT5IkrXBJzkyyNclNPWUnJ9k87ffI1La3J7kjyW1JfnY0UUsrUz+rPHg1QdKc2s/+tvbh49u/Al4B/EJbfjZwMs1ysoe39wH+CvhQkrSvI0mSVq6zgA/R9GTs9d6qendvQbuc/ZHA84BnAn+b5Ier6pFhBCqtdP30UJCkviTZpR0XvRW4DPgScH9VbW936V1D/tEVYdrtD9AMi5AkSStYVV0J3Nvn7ocD51fVt6vqyzS9pA9asuAk7WCgZSMlaWfaqwEHJtkDuBD49wt9zUFXhJnYrZnQZxDLYVWNlbo6iPWWpBXlpCSvB64B1lfVfTQXKK7q2af34oWkJWZCQdKiq6r7k1wB/DiwR5Jd214Ivau+TK0IsynJrsBTaCZnnP5aA60I88FzL+K0Gwdr2jYevfPX7IKVujqI9ZakFePDwLtohlO+CzgNeOMgLzDoRYouJ2/HPfbZLv7MdmFonOsyZdz/zWez0LhNKEhaFEmeDvxbm0zYDXgVzUSLVwCvo1npYfqKMMcCn223/53zJ0iSpJlU1T1T95OcAXyyfdjXkvXtawx0kaLLydtxj322pVjXr9k+44WhLlz8Gfd/89ksNG7nUJC0WPYGrkhyA/B54LKq+iTwNuA3k9xBM0fCR9r9PwI8rS3/TWDDCGKWJEkdkGTvnoevBaZWgLgYODLJE9ulqvcHPjfs+KSVyh4KkhZFVd0AvHCG8juZYXKkqvpX4L8MITRJktQhSc4D1gF7JdkEvBNYl+RAmiEPG4E3AVTVzUkuAG4BtgMnusKDNDwmFCRJkiSNjao6aobij8xQNrX/KcApSxeRpNk45EGSJEmSJA3MhIIkSZIkSRqYCQVJkiRJkjQwEwqSJEmSJGlgJhQkSZIkSdLATChIkiRJkqSBmVCQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNzISCJEmSJEkamAkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmShiLJmUm2Jrmpp+zkJJuTXN/+Hdqz7e1J7khyW5KfHU3UkiRpNnMmFPzylyRJi+Qs4OAZyt9bVQe2f5cCJDkAOBJ4XvucP0qyy9AilSRJc+qnh8JZ+OUvSZIWqKquBO7tc/fDgfOr6ttV9WXgDuCgJQtOkiQNbNe5dqiqK5Os7vP1Hv3yB76cZOrL/7PzD1GSJC1zJyV5PXANsL6q7gP2Aa7q2WdTW/YYSU4ATgCYmJhgcnJyzgNu27atr/3GTVfjhm7Fvn7N9kfvT+y24+PZjGPduvRvLqmb5kwo7MSCvvwlSZKADwPvAqq9PQ144yAvUFWnA6cDrF27ttatWzfncyYnJ+lnv3HT1bihW7Eft+GSR++vX7Od026c+5R549HrljCi+enSv7mkbppvQmHBX/4r6WrCQvWbGZ+yXP6NVur/90qtt6SVqarumbqf5Azgk+3DzcB+Pbvu25ZJkqQxMa+EwmJ8+a+kqwkL9cFzL+orMz5lHDPk87FS/79Xar0lrUxJ9q6qLe3D1wJTk0BfDHw0yXuAZwL7A58bQYiSJGkW80oo+OUvSZIGleQ8YB2wV5JNwDuBdUkOpOn1uBF4E0BV3ZzkAuAWYDtwYlU9MoKwJUnSLOZMKPjlL0mSFkNVHTVD8Ud2sv8pwClLF5EkSfO3etp8K73zr8xk46mHLXVIQ9fPKg9++UuSJEmSpB08btQBSJIkSZKk7jGhIEmSJEmSBmZCQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFCQtiiT7JbkiyS1Jbk7ylrZ8zySXJbm9vX1qW54kH0hyR5IbkrxotDWQJEmSNAgTCpIWy3ZgfVUdALwEODHJAcAG4PKq2h+4vH0McAiwf/t3AvDh4YcsSZLGTZIzk2xNclNPmRcopDFkQkHSoqiqLVV1XXv/IeBWYB/gcODsdrezgde09w8HzqnGVcAeSfYebtSSJGkMnQUcPK3MCxTSGNp11AFIWn6SrAZeCFwNTFTVlnbTV4GJ9v4+wN09T9vUlm3pKSPJCTQnCExMTDA5ObnTY0/sBuvXbB8o3rleswu2bdu2LOoxKOstSctPVV3Znkv0OhxY194/G5gE3kbPBQrgqiR7JNm759xD0hIyoSBpUSV5MvBx4K1V9WCSR7dVVSWpQV6vqk4HTgdYu3ZtrVu3bqf7f/DcizjtxsGato1H7/w1u2BycpK5/m2WI+stSSvGgi5QwOAXKbqcvB332Ge7+DPbhaFxrUtvrP1c1BrHeiz0vWJCQdKiSfJ4mmTCuVX1ibb4nqkrBe2Qhq1t+WZgv56n79uWSZIkzWo+Fyja5w10kaLLydtxj/24DZfMWL5+zfYZLwyN68Wf3nrMFnuvcazHQt8rzqEgaVGk6YrwEeDWqnpPz6aLgWPb+8cCF/WUv76dTOklwAN2T5QkSbO4Z2quJS9QSOPDhIKkxfJS4BjgFUmub/8OBU4FXpXkduCn28cAlwJ3AncAZwC/OoKYJUlSN3iBQhpDDnmQtCiq6jNAZtn8yhn2L+DEJQ1KkiR1TpLzaCZg3CvJJuCdNBckLkhyPHAXcES7+6XAoTQXKL4JvGHoAUsrmAkFSZIkSWOjqo6aZZMXKKQx45AHSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBuaykZIkaWiSnAm8GthaVc9vy/YEPgasBjYCR1TVfUkCvJ9mjflvAsdV1XWjiFsaB6s3XDLQ/mcdvGqJIpGkRl8JhXH58r9x8wMcN0BDuvHUwxbjsJIkafGcBXwIOKenbANweVWdmmRD+/htwCHA/u3fi4EPt7eSJGkM9Dvk4Szg4GllU1/++wOXt49hxy//E2i+/CVJkqiqK4F7pxUfDpzd3j8beE1P+TnVuArYI8neQwlUkiTNqa+Egl/+kiRpCU1U1Zb2/leBifb+PsDdPfttasskSdIYWMgcCoN++W9BkiRpJ6qqktQgz0lyAk2vSCYmJpicnJzzOdu2betrv3HT1bihW7GvX7P90fsTu+34eDbDqFs/cfTq0r+5pG5alEkZh/Xl32+DPmW5NKArtd4r9UtwpdZb0op2T5K9q2pL26txa1u+GdivZ79927IdVNXpwOkAa9eurXXr1s15wMnJSfrZb9x0NW7oVuy9c3atX7Od026c+5R549HrljCixiBziUEzKWNX/s0lddNCEgpD//L/4LkX9dWgTxlGwz4MK7XeXTrxWEwrtd6SVrSLgWOBU9vbi3rKT0pyPs1kjA/09I6UJEkj1u+kjDOZ+vKHx375vz6Nl+CXvyRJaiU5D/gs8Nwkm5IcT5NIeFWS24Gfbh8DXArcCdwBnAH86ghCliRJs+h32cjzgHXAXkk2Ae+k+bK/oD0RuAs4ot39UpolI++gWTbyDYscsyRJ6qiqOmqWTa+cYd8CTlzaiCRJ0nz1lVDwy1+SJEmSJPVayJAHSZIkSZK0QplQkCRJkiRJAzOhIEmSJEmSBmZCQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWC7jjoASZIkSdLcVm+4pK/91q/ZznHtvhtPPWwpQ9IKZw8FSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBuaykZIkSVo0sy1r17uMXS+XtJOk7rKHgqRFkeTMJFuT3NRTtmeSy5Lc3t4+tS1Pkg8kuSPJDUleNLrIJUlSVyTZmOTGJNcnuaYtm/F8Q9LSM6EgabGcBRw8rWwDcHlV7Q9c3j4GOATYv/07AfjwkGKUJEnd9/KqOrCq1raPZzvfkLTEHPKgsXXj5gdm7Bo5G7tMjlZVXZlk9bTiw4F17f2zgUngbW35OVVVwFVJ9kiyd1VtGVK4kiRp+ZjtfEPSEjOhIGkpTfQkCb4KTLT39wHu7tlvU1v2mIRCkhNoejEwMTHB5OTkzg+4WzNOdxBzvWYXbNu2bVnUY1DWW5JWnAI+naSAP6mq05n9fGMHg55TjGNb2+85Tu/50LjVAWavx2znceNYB9gx1n7OQcexHgt9n5tQkDQUVVXtl/+gzzsdOB1g7dq1tW7dup3u/8FzL+K0Gwdr2jYevfPX7ILJyUnm+rdZjqy3JK04P1FVm5M8A7gsyRd7N+7sfGPQc4pxbGv77b27fs32R8+HxvE8Z7Z69MbdaxzrADvWY7bYe41jPRb6PncOBUlL6Z4kewO0t1vb8s3Afj377duWSZIkzaqqNre3W4ELgYOY/XxD0hIzoSBpKV0MHNvePxa4qKf89e1qDy8BHnD+BEmStDNJViXZfeo+8DPATcx+viFpiTnkQdKiSHIezYRIeyXZBLwTOBW4IMnxwF3AEe3ulwKHAncA3wTeMPSAJUlS10wAFyaB5nfMR6vqU0k+z8znG5KW2IITCkk2Ag8BjwDbq2ptkj2BjwGrgY3AEVV130KPJWl8VdVRs2x65Qz7FnDi0kYkqUs8n5A0l6q6E3jBDOXfYIbzDUlLb7GGPLgWrCRJWijPJyRJ6pClmkPhcJo1YGlvX7NEx5EkScuX5xOSJI2xxZhDYd5rwUqSJLWGtrY8jOf68v3oQtzLYX35QdeWh+HUo584enXh/SJpca3uc2nRKWcdvGpBx1uMhMK81oKdz5d/vw36lOXSgFrv/iyXevvlL2mFGtra8jCe68v3owtxL4f15QddWx6GU4/Z/m1nc9bBq8b+/SKp2xacUOhdCzbJDmvBVtWW2daCnc+X/wfPvaivBn3KOH5BzYf17s9yqXcXThYlabHN93xCkiSNzoLmUHAtWEmStFCeT0iS1E0L7aHgWrCSJGmhPJ+QJKmDFpRQcC1YSZK0UJ5PSJLUTUu1bKQkSZIkSVrGTChIkiRJkqSBmVCQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNzISCJEmSJEka2IKWjZQkjYcbNz/AcRsuGeg5G089bImikSRJ0kpgDwVJkiRJkjQwEwqSJEmSJGlgDnmQltjqAbuhn3XwqiWKRJIkSZIWjz0UJEmSJEnSwOyhIEmSJEnTDDrhsZMdayWyh4IkSZIkSRqYCQVJkiRJkjQwEwqSJEmSJGlgzqEgSZI0BvpZFWj9mu2Pjul2vLYkadTsoSBJkiRJkgZmQkGSJEmSJA3MhIIkSZIkSRqYCQVJkiRJkjQwJ2WUJHXWjZsfeHSCun6N40R2/UzG1+usg1ctUSSSJEn9M6EgSZJWnEGTUeOYiJIkadQc8iBJkiRJkga2ZAmFJAcnuS3JHUk2LNVxJHWX7YSkfthWSJqL7YQ0GkuSUEiyC/CHwCHAAcBRSQ5YimNJ6ibbCUn9sK2QNBfbCWl0lqqHwkHAHVV1Z1V9BzgfOHyJjiWpm2wnJPXDtkLSXGwnpBFZqoTCPsDdPY83tWWSNMV2QlI/bCskzcV2QhqRVNXiv2jyOuDgqvql9vExwIur6qSefU4ATmgfPhe4rY+X3gv4+iKH2wXWe2Xpp97PqqqnDyOYpdJPO9GWD9pW+L5ZWaz3zq2ItmKFnVN0NW7obuxdjRs8p1jJ5xRdjb2rcUN3Y1/QOcVSLRu5Gdiv5/G+bdmjqup04PRBXjTJNVW1duHhdYv1XllWUL3nbCdg8LZiBf377cB6rywrrN6eU/ToatzQ3di7Gjd0O/YBeU4xTVdj72rc0N3YFxr3Ug15+Dywf5JnJ3kCcCRw8RIdS1I32U5I6odthaS52E5II7IkPRSqanuSk4C/AXYBzqyqm5fiWJK6yXZCUj9sKyTNxXZCGp2lGvJAVV0KXLrILztQd8ZlxHqvLCum3rYTi8p6rywrqt62FTvoatzQ3di7Gjd0O/aB2E48Rldj72rc0N3YFxT3kkzKKEmSJEmSlrelmkNBkiRJkiQtY51IKCQ5M8nWJDeNOpZhSbJfkiuS3JLk5iRvGXVMw5Dk+5J8Lsk/t/X+3VHHNExJdknyhSSfHHUsXZTk4CS3JbkjyYZRxzMMK7F9BNvIldpGLoaufma6+p5fDu/Zrn43J9mY5MYk1ye5ZtTxdIntxPB1va1Yye1EJ4Y8JHkZsA04p6qeP+p4hiHJ3sDeVXVdkt2Ba4HXVNUtIw5tSSUJsKqqtiV5PPAZ4C1VddWIQxuKJL8JrAW+v6pePep4uiTJLsD/A14FbKKZ8fmoFfCZWXHtI9hGrtQ2cjF09TPT1ff8cnjPdvW7OclGYG1V9bO+vHrYTgxf19uKldxOdKKHQlVdCdw76jiGqaq2VNV17f2HgFuBfUYb1dKrxrb24ePbv/HPei2CJPsChwF/OupYOuog4I6qurOqvgOcDxw+4piW3EpsH8E2sn24otrIxdLVz0xX3/Ndf8/63bwy2U4MX5fbipXeTnQiobDSJVkNvBC4esShDEXbZeh6YCtwWVWtiHoD7wN+C/juiOPoqn2Au3seb6IjX6JaGNvIFdNGqtW193zH37Pvo7vfzQV8Osm1SU4YdTAarq61E9DptuJ9rOB2woTCmEvyZODjwFur6sFRxzMMVfVIVR0I7AsclKQzXc3mK8mrga1Vde2oY5G6xDZyZbSR+p4uvue7+p5dBt/NP1FVLwIOAU5su/FrBehiOwHdbCtsJ0wojLV2/NDHgXOr6hOjjmfYqup+4Arg4BGHMgwvBX6uHcd0PvCKJH8x2pA6ZzOwX8/jfdsyLVO2kSuqjRTdf8938D3b6e/mqtrc3m4FLqQZGqhlruvtBHSurVjx7YQJhTHVTkzyEeDWqnrPqOMZliRPT7JHe383mgn2vjjSoIagqt5eVftW1WrgSODvquoXRxxW13we2D/Js5M8gebf8eIRx6QlYhu5stpIdfc93+X3bJe/m5OsaiflI8kq4GeATq1YoMF1tZ2A7rYVthMdSSgkOQ/4LPDcJJuSHD/qmIbgpcAxNFmu69u/Q0cd1BDsDVyR5AaaH4iXVVWnll/RaFTVduAk4G9oJiG6oKpuHm1US2+Fto9gG2kbOU8d/sx09T3ve3Y0JoDPJPln4HPAJVX1qRHH1Bm2EyNhWzF8i9JOdGLZSEmSJEmSNF460UNBkiRJkiSNFxMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBmZCQZIkSZIkDcyEgiRJkiRJGpgJBUnSokmyOkkl2XXUsUgab0nWJdk06jgkLVySjUl+epFf87gkn9nJdtuQMWBCQYvKHxNS97UnBd9K8lCS+5P8U5I3J/E7QxJJ3p7kr6eV3T5L2ZHDjU7SctX+xnjOqOPQjjw5lCTN5D9V1e7As4BTgbcBHxltSJLGxJXAf0yyC0CSvYHHAy+cVvacdl9J0jJlQmGZS/KiJF9orzT+ZZKPJfkf7bZfTnJHknuTXJzkmT3P+49JPp/kgfb2P/Zs26FLU5KTk/xF+3DqxOH+JNuS/Pgw6ilpaVTVA1V1MfDzwLFJnp/ksLZdeTDJ3UlOnu35SfZM8mdJvpLkviT/Z1ixS1oyn6dJIBzYPv5J4ArgtmllXwJ+Nsmt7XnInUneNNuLJtkvySeSfC3JN5J8aMlqIGkpHJjkhvb3w8eSfB9Aklcnub6n1+OPTD0hyYYkX2rbiFuSvHamF04y9Rvjn9vfGD/fs219kq1JtiR5w5LWUI9hQmEZS/IE4ELgLGBP4Dzgte22VwD/CzgC2Bu4Czi/3bYncAnwAeBpwHuAS5I8rY/Dvqy93aOqnlxVn12s+kganar6HLCJ5kfCw8DrgT2Aw4BfSfKaWZ7658CTgOcBzwDeu9SxSlpaVfUd4Gq+953/MuAfgM9MK7sS2Aq8Gvh+4A3Ae5O8aPprtj0bPklzPrIa2If2vERSZxwBHAw8G/gR4LgkLwTOBN5E87viT4CLkzyxfc6XaM4tngL8LvAXbQ+nHVTVVNvygvY3xsfaxz/QPncf4HjgD5M8dSkqp5mZUFjeXgLsCnygqv6tqj4BfK7ddjRwZlVdV1XfBt4O/HiS1TQ/EG6vqj+vqu1VdR7wReA/Db8KksbIV4A9q2qyqm6squ9W1Q00ycqfmr5ze0JwCPDmqrqvbYf+fsgxS1oaf8/3kgc/SZNQ+IdpZX9fVZdU1Zeq8ffAp9tt0x0EPBP4r1X1cFX9a1XNOhmbpLH0gar6SlXdC/xfmh5LJwB/UlVXV9UjVXU28G2a3ylU1V+2z/lumyS4naY96Ne/Ab/XnmNcCmwDnruIddIcTCgsb88ENldV9ZTd3bPtrqnCqtoGfIMmu7fDttZd7TZJK9c+wL1JXpzkirZb8gPAm4G9Zth/P+DeqrpvqFFKGoYrgZ9oezU+vapuB/6JZm6FPYHnA1cmOSTJVe3wyvuBQ5m9vbirqrYPKX5Ji++rPfe/CTyZZi6m9e1wh/vbdmA/mt8bJHl9z3CI+2najpnaiNl8Y1q7MXVcDYkJheVtC7BPkvSU7dfefoXmAw5AklU03ZA2T9/W+sF2GzTdnZ/Us+0Heu73Ji8kLRNJfowmofAZ4KPAxcB+VfUU4I+BzPC0u4E9k+wxrDglDc1naboZ/zLwjwBV9SDNOcQvt7dfAT4OvBuYqKo9gEuZvb34QVeJkpadu4FTqmqPnr8nVdV5SZ4FnAGcBDytbSNuYuY2QmPKhMLy9lngEeCkJLsmOZzvdSE6D3hDkgPbMUz/E7i6qjbSfNn/cJJfaJ/388ABNGMbAa4Hjkzy+CRrgdf1HPNrwHeBH1riukkagiTfn+TVNGOZ/6KqbgR2p+l58K9JDgJ+YabnVtUW4K+BP0ry1LbNeNlM+0rqlqr6FnAN8Js0Qx2mfKYtuxJ4AvBEmnOD7UkOAX5mlpf8HM2FkFOTrEryfUleulTxSxqaM4A3t70b036+D0uyO7CK5mLk1wDaCRWfv5PXugd/Y4wdEwrLWDtp0n+mmaDkfuAXaZIC366qvwV+h+bKwRbg3wFHts/7Bs0ESutphkH8FvDqqvp6+9K/0+5/H83kKR/tOeY3gVOAf2y7Lr1kaWspaYn83yQP0VxZ+G2ayVmnZk7+VeD32u3/HbhgJ69zDM34xi/STM721qUKWNLQ/T3NZKu9cx38Q1t2ZVU9BPw6TRtxH03y8eKZXqiqHqGZq+k5wL/QTAL78zPtK6k7quoaml5LH6JpB+4Ajmu33QKcRnMR9B5gDW2Pp1mcDJzd/sY4Yumi1iCy4/B6LXdJrgb+uKr+bNSxSJIkSZK6yx4Ky1ySn0ryA+3QhWNplnD51KjjkiRJkiR1mxPfLH/PpelquAq4E3hdO65ZkiRJkqR5c8iDJEmSJEkamEMeJEmSJEnSwEwoSJIkSRobSc5MsjXJTT1lJyfZnOT69u/Qnm1vT3JHktuS/OxoopZWprEY8rDXXnvV6tWr59zv4YcfZtWqVUsf0CLratzQ3di7Gjf0F/u111779ap6+pBCGhv9tBXL/f9+HHU1buhu7P3GvRLbCs8pxldXY+9q3NDdc4okLwO2AedU1fPbspOBbVX17mn7HgCcBxwEPBP4W+CH26VIZ+U5xXjqatzQ3dgXfE5RVSP/+9Ef/dHqxxVXXNHXfuOmq3FXdTf2rsZd1V/swDU1Bp/dYf/101Ys9//7cdTVuKu6G3u/ca/EtsJzivHV1di7GndVt88pgNXATT2PTwb+vxn2ezvw9p7HfwP8+Fyv7znFeOpq3FXdjX2h5xSu8iBJkiSpC05K8nrgGmB9Vd0H7ANc1bPPprbsMZKcAJwAMDExweTk5E4Ptm3btjn3GVddjb2rcUN3Y19o3CYUJEmSJI27DwPvAqq9PQ144yAvUFWnA6cDrF27ttatW7fT/ScnJ5lrn3HV1di7Gjd0N/aFxu2kjJIkaSicaE3SfFXVPVX1SFV9FziDZs4EgM3Afj277tuWSRoCEwqSJGlYzgIOnqH8vVV1YPt3KTw60dqRwPPa5/xRkl2GFqmksZJk756HrwWmEpMXA0cmeWKSZwP7A58bdnzSSuWQBwGwesMlM5avX7Od42bYtvHUw5Y6JGlebtz8wIzv2Z3x/SwNR1VdmWR1n7sfDpxfVd8GvpzkDporkp9djFgGbStsJ6ThSXIesA7YK8km4J3AuiQH0gx52Ai8CaCqbk5yAXALsB04seZY4UFazmb7XTebsw5e2MoUJhQkSdKoDXWiNYCJ3Zqkeb/GZaKtrk76Bd2NvatxQ3djr6qjZij+yE72PwU4ZekikjSbORMKSc4EXg1sre+tA/u/gf8EfAf4EvCGqrq/vepwK3Bb+/SrqurNSxG4JElaFoY+0RrAB8+9iNNu7P+6ysaj537NYejqpF/Q3di7Gjd0O3ZJ3dDPHApn8djxjpcBz6+qHwH+H836r1O+1DMO0mSCJEmalROtSZLUXXMmFKrqSuDeaWWfrqqpfoJX0XzJS5IkDcSJ1iRJ6q7FmEPhjcDHeh4/O8kXgAeB/1ZV/zDTk+Yz3rGr48C6EPds40hnG2M67vXpwr/5bLocuyTtjBOtSZK0vCwooZDkt2m+5M9ti7YAP1hV30jyo8D/SfK8qnpw+nPnM96xq+PAuhD3bDNdr1+zfcYxpuMylnQ2Xfg3n02XY5eknXGiNUmSlpd+5lCYUZLjaCZrPLqqCqCqvl1V32jvX0szYeMPL0KckiRJkiRpjMwroZDkYOC3gJ+rqm/2lD89yS7t/R+iGe9452IEKkmSJEmSxsecCYV2vONngecm2ZTkeOBDwO7AZUmuT/LH7e4vA25Icj3wV8Cbq+remV5X0vKSZL8kVyS5JcnNSd7Slp+cZHPbVlyf5NCe57w9yR1Jbkvys6OLXpIkSdKg5pxDYZDxjlX1ceDjCw1KUidtB9ZX1XVJdgeuTXJZu+29VfXu3p2THAAcCTwPeCbwt0l+2EnXJEmSpG6Y9xwKktSrqrZU1XXt/YeAW4F9dvKUw4Hz27lXvgzcwffWn5ckSZI05hZj2UhJ2kGS1cALgauBlwInJXk9cA1NL4b7aJINV/U8bRMzJCAGXWJ2tqVOd2Zcluns6pKhXY0buht7V+OWJEnLiwkFSYsqyZNphj69taoeTPJh4F00a8y/CzgNeGO/rzfoErMfPPeiGZc63ZlxWQa1q0uGdjVu6G7sXY1bkiQtLw55kLRokjyeJplwblV9AqCq7qmqR6rqu8AZfG9Yw2Zgv56n79uWSZIkSeoAEwqSFkWS0EzYemtVvaenfO+e3V4L3NTevxg4MskTkzybZpnZzw0rXkmSJEkL45AHSYvlpcAxwI3t0rEA7wCOSnIgzZCHjcCbAKrq5iQXALfQrBBxois8SJIkSd1hQkHSoqiqzwCZYdOlO3nOKcApSxaUJEmSpCXjkAdJkiRJkjQwEwqSJEmSJGlgJhQkSZIkSdLATChIkiRJkqSBmVCQJEmSJEkDM6EgSZIkSZIGZkJBkiRJkiQNzISCJEmSJEka2K797JTkTODVwNaqen5btifwMWA1sBE4oqruSxLg/cChwDeB46rqusUPfTys3nDJnPusX7Od49r9Np562FKHJEmSJEnSkuu3h8JZwMHTyjYAl1fV/sDl7WOAQ4D9278TgA8vPExJkiRJkjRO+kooVNWVwL3Tig8Hzm7vnw28pqf8nGpcBeyRZO9FiFWSJEmSJI2JvoY8zGKiqra0978KTLT39wHu7tlvU1u2paeMJCfQ9GBgYmKCycnJOQ+4bdu2vvYbpvVrts+5z8Ru39tv3OKfMls9emPvNa71mDKO75V+dTl2SZIkSSvHQhIKj6qqSlIDPud04HSAtWvX1rp16+Z8zuTkJP3sN0zH9TmHwmk3Nv/UG49et8QRzc9s9eiNvde41mPKOL5X+tXl2CVJkiStHAtZ5eGeqaEM7e3WtnwzsF/Pfvu2ZZIkSZIkaZlYSELhYuDY9v6xwEU95a9P4yXAAz1DIyQtU0n2S3JFkluS3JzkLW35nkkuS3J7e/vUtjxJPpDkjiQ3JHnRaGsgSZIkaRB9JRSSnAd8Fnhukk1JjgdOBV6V5Hbgp9vHAJcCdwJ3AGcAv7roUUsaR9uB9VV1APAS4MQkB+CKMJIkSdKy1NccClV11CybXjnDvgWcuJCgJHVP2xNpS3v/oSS30kzIejiwrt3tbGASeBs9K8IAVyXZI8ne9miSJEmSumFRJmWUpF5JVgMvBK5myCvCzLYyyc6My6oaXV3ho6txQ3dj72rckiRpeTGhIGlRJXky8HHgrVX1YJJHtw1jRZgPnnvRjCuT7My4rFrS1RU+uho3dDf2rsYtSZKWl4VMyihJO0jyeJpkwrlV9Ym22BVhJElS35KcmWRrkpt6ypzkWRpDJhQkLYo0XRE+AtxaVe/p2eSKMJIkaRBnAQdPK3OSZ2kMmVCQtFheChwDvCLJ9e3fobgijKQeXnmUNJequhK4d1rx4TSTO9Pevqan/JxqXAXsMdUzUtLScw4FSYuiqj4DZJbNrggjacpZwIeAc3rKpq48nppkQ/v4bex45fHFNFceXzzUaCWNiwVN8gyDT/Tc5Qlwuxp7V+OG8Yl90MnJFxq3CQVJkjQ0VXVluxJML5eXldS3+Uzy3D5voImeuzwBbldj72rcMD6xH7fhkoH2P+vgVQuK2yEPkiRp1Aa98ihp5XGSZ2kM2UNBy8bqnmzc+jXb+8rObTz1sKUMSZI0oPlceRy0GzPAxG6DdQsdh26sMD5dauejq7F3NW7oduwzmJrk+VQeO8nzSUnOpxkS5STP0hCZUJAkSaN2z9RQhvlceRy0GzPAB8+9iNNu7P80aOPRc7/mMIxLl9r56GrsXY0buht7kvNohkHtlWQT8E6aRMIFSY4H7gKOaHe/FDiUZpLnbwJvGHrA0gpmQkGSJI2aVx4lPaqqjpplk5M8S2PGhIIkSRoarzxKkrR8mFCQJElD45VHSZKWDxMKkiRJkqShWT3L5OmzTazuROrjy2UjJUmSJEnSwObdQyHJc4GP9RT9EPDfgT2AXwa+1pa/o6oune9xJEmSJEnS+Jl3QqGqbgMOBEiyC80yThfSTJj03qp692IEKEmSJEmSxs9iDXl4JfClqrprkV5PkiRJkiSNscVKKBwJnNfz+KQkNyQ5M8lTF+kYkiRJkiRpTCx4lYckTwB+Dnh7W/Rh4F1AtbenAW+c4XknACcATExMMDk5Oeextm3b1td+w7R+zfY595nY7Xv7jVv8U2arR2/svcaxHr1xzhb3dONYj3F8n0uSJEnSdIuxbOQhwHVVdQ/A1C1AkjOAT870pKo6HTgdYO3atbVu3bo5DzQ5OUk/+w3TTMuaTLd+zXZOu7H5p9549Loljmh+ZqtHb+y9xrEevXWYLe7pxrEe4/g+70eSM4FXA1ur6vlt2cnMMklrkrcDxwOPAL9eVX8z9KAlaYzMtoxar94l1VxGTZI0aosx5OEoeoY7JNm7Z9trgZsW4RiSxt9ZwMEzlL+3qg5s/6aSCQfQDJV6XvucP2ond5UkSZLUEQtKKCRZBbwK+ERP8R8kuTHJDcDLgd9YyDEkdUNVXQnc2+fuhwPnV9W3q+rLwB3AQUsWnCRJkqRFt6AhD1X1MPC0aWXHLCgiScvNSUleD1wDrK+q+4B9gKt69tnUlj3GoPOt9Dt/Rq9xmbOiq/NndDVu6G7sXY1bkiQtL4sxh4IkzaavSVp3ZtD5Vj547kV9zZ/Ra1zm0ujq/BldjRu6G3tX45YkScuLCQVJS2Ynk7RuBvbr2XXftkyS1HGzTS7ZO6FkLyeXlKTuWoxJGSVpRjuZpPVi4MgkT0zybGB/4HPDjk+SJEnS/NlDQdKiSHIesA7YK8km4J3AuiQH0gx52Ai8CaCqbk5yAXALsB04saoeGUHYkiRJkubJhIKkRVFVR81Q/JGd7H8KcMrSRSRJkiRpKTnkQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFCRJkiRJ0sBc5UGSJEmSpAGt3nDJo/fXr9nOcT2PZ7Lx1MOWOqShs4eCJEmSJEkamAkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgS14lYckG4GHgEeA7VW1NsmewMeA1cBG4Iiqum+hx5K6aPUcs71Od9bBq5YoEkmSJElaPIvVQ+HlVXVgVa1tH28ALq+q/YHL28eSJEmSJGmZWKohD4cDZ7f3zwZes0THkSRJkiRJI7DgIQ9AAZ9OUsCfVNXpwERVbWm3fxWYmP6kJCcAJwBMTEwwOTk554G2bdvW137DtH7N9jn3mdjte/uNW/xTZqtHb+y9xrEevXHOFvd0w6hHP3H0Gsf3eT+SnAm8GthaVc9vy2Yc/pQkwPuBQ4FvAsdV1XWjiFuSJEnS/CxGQuEnqmpzkmcAlyX5Yu/Gqqo22cC08tOB0wHWrl1b69atm/NAk5OT9LPfMB3Xx/j49Wu2c9qNzT/1xqPXLXFE8zNbPXpj7zWO9eitw2xxTzeMevTzHul11sGrxu593qezgA8B5/SUTQ1/OjXJhvbx24BDgP3bvxcDH25vJUmSJHXEgoc8VNXm9nYrcCFwEHBPkr0B2tutCz2OpPFWVVcC904rnm340+HAOdW4Cthjqs2QJEmaTZKNSW5Mcn2Sa9qyPZNcluT29vapo45TWikW1EMhySrgcVX1UHv/Z4DfAy4GjgVObW8vWmigkjpptuFP+wB39+y3qS3bwjSDDo/qd7hLr3EZYtLV4S5djRu6G3tX494ZV42SNICXV9XXex7P1iNS0hJb6JCHCeDCZjg0uwIfrapPJfk8cEGS44G7gCMWeBxJHTfb8Kc+njfQ8KgPnntRX8Ndeo3LEJ5xHNbVj67GDd2Nvatx98EfCZLm43BgXXv/bGAS2wppKBaUUKiqO4EXzFD+DeCVC3ltScvCPUn2rqot04Y/bQb269lv37ZMknr5I0HSdPOaEB4G7/XY5d5g4x77cpgQHgafFH45Tgi/GJMyStJsZhv+dDFwUpLzaSZjfKDnREDSyjTvHwnSYls9baLnfiZY3njqYUsZkr5nXhPCt9sG6vXY5d5g4x77cpgQHgafFH45TghvQkHSokhyHs2VxL2SbALeSZNImGn406U0S0beQbNs5BuGHrCkcTPvHwnzWYp60PlWxuWqkktRD8e4LkU9qHG/Sj0fvRPCJ9lhQvgZekRKWmImFCQtiqo6apZNjxn+VFUFnLi0EUnqkoX8SJjPUtSDzrcyLleVXIp6OMZ1KepBjftV6kENe0L4Gzc/MNDVXnupaCVa8LKRkiRJC5FkVZLdp+7T/Ei4ie/9SABXjZLUDHv6TJJ/Bj4HXFJVn6JJJLwqye3AT7ePJQ2BPRQkSdKouWqUpDk5IfyO83vsTO/cH/ac0FIyoSBJkkbKHwmSJHWTQx4kSZIkSdLATChIkiRJkqSBOeRBkpaY4x0lSZK0HNlDQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFCRJkiRJ0sBMKEiSJEmSpIHNO6GQZL8kVyS5JcnNSd7Slp+cZHOS69u/QxcvXEmSJEmSNA52XcBztwPrq+q6JLsD1ya5rN323qp698LDk7QcJNkIPAQ8AmyvqrVJ9gQ+BqwGNgJHVNV9o4pRkiRJ0mDm3UOhqrZU1XXt/YeAW4F9FiswScvOy6vqwKpa2z7eAFxeVfsDl7ePJUmSJHXEQnooPCrJauCFwNXAS4GTkrweuIamF8NjrjomOQE4AWBiYoLJyck5j7Nt27a+9hum9Wu2z7nPxG7f22/c4p8yWz16Y+81jvXojXO2uKcbRj36iaPXOL7Pl8jhwLr2/tnAJPC2UQUjSZIkaTALTigkeTLwceCtVfVgkg8D7wKqvT0NeOP051XV6cDpAGvXrq1169bNeazJyUn62W+YjttwyZz7rF+zndNubP6pNx69bokjmp/Z6tEbe69xrEdvHWaLe7ph1KOf90ivsw5eNXbv80VQwKeTFPAn7ed/oqq2tNu/CkyMLDpJkjpg9TzOKSRpKS0ooZDk8TTJhHOr6hMAVXVPz/YzgE8uKMIeN25+YKAfZxtPPWyxDi1pYX6iqjYneQZwWZIv9m6sqmqTDY8xaG+mfnun9FrqHiH9xtOF3kwz6XKvmq7G3tW4JUnS8jLvhEKSAB8Bbq2q9/SU791z1fG1wE0LC1FS11XV5vZ2a5ILgYOAe6baiyR7A1tnee5AvZk+eO5FffVO6bXUPVX6TYR2oTfTTMax91i/uhp7V+OWJEnLy7wnZaSZK+EY4BXTloj8gyQ3JrkBeDnwG4sRqKRuSrKqXQmGJKuAn6FJNF4MHNvudixw0WgilCRJkjQf8+6hUFWfATLDpkvnH46kZWgCuLDp1MSuwEer6lNJPg9ckOR44C7giBHGKEmSJGlAi7LKgyTNpqruBF4wQ/k3gFcOPyJJkiRJi2EhQx4kSZIkSdIKZUJBkiRJkiQNzISCJEmSJEkamAkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwFw2UpLUl9UbLpmxfP2a7Rw3w7aNpx621CFJkiRphOyhIEmSJEmSBmZCQZIkSZIkDcyEgiRJkiRJGpgJBUmSJEmSNDATCpIkSZIkaWAmFCRJkiRJ0sBMKEiSJEmSpIHtulQvnORg4P3ALsCfVtWpS3UsSd1kO6FRWL3hkkfvr1+zneN6Hs9k46mHLXVIO8TUj7MOXrVEkYwn2wpJc7GdkEZjSXooJNkF+EPgEOAA4KgkByzFsSR1k+2EpH7YVkiai+2ENDpLNeThIOCOqrqzqr4DnA8cvkTHktRNthOS+mFbIWkuthPSiCxVQmEf4O6ex5vaMkmaYjshqR+2FZLmYjshjUiqavFfNHkdcHBV/VL7+BjgxVV1Us8+JwAntA+fC9zWx0vvBXx9kcMdhq7GDd2NvatxQ3+xP6uqnj6MYJZKP+1EWz5oW7Hc/+/HUVfjhu7G3m/cK6Kt8JyiM7oae1fjBs8pPKfonq7GDd2NfUHnFEs1KeNmYL+ex/u2ZY+qqtOB0wd50STXVNXahYc3XF2NG7obe1fjhm7HPqA52wkYvK3o8r9fV2PvatzQ3di7Gvc8eU7Ro6txQ3dj72rc0O3YB+Q5xTRdjb2rcUN3Y19o3Es15OHzwP5Jnp3kCcCRwMVLdCxJ3WQ7IakfthWS5mI7IY3IkvRQqKrtSU4C/oZm6ZYzq+rmpTiWpG6ynZDUD9sKSXOxnZBGZ6mGPFBVlwKXLvLLDtSdcYx0NW7obuxdjRu6HftAbCceo6uxdzVu6G7sXY17XmwrdtDVuKG7sXc1buh27AOxnXiMrsbe1bihu7EvKO4lmZRRkiRJkiQtb0s1h4IkSZIkSVrGOpFQSHJmkq1Jbhp1LINIsl+SK5LckuTmJG8ZdUz9SPJ9ST6X5J/buH931DENKskuSb6Q5JOjjmUQSTYmuTHJ9UmuGXU8XWI7MXxdbytsJ1Ym24rh6no7AbYVK5HtxPB1va1Yye1EJ4Y8JHkZsA04p6qeP+p4+pVkb2Dvqrouye7AtcBrquqWEYe2U0kCrKqqbUkeD3wGeEtVXTXi0PqW5DeBtcD3V9WrRx1Pv5JsBNZWVRfXsB0p24nh63pbYTuxMtlWDFfX2wmwrViJbCeGr+ttxUpuJzrRQ6GqrgTuHXUcg6qqLVV1XXv/IeBWYJ/RRjW3amxrHz6+/Rv/zFMryb7AYcCfjjoWDY/txPB1ua2wnVi5bCuGq8vtBNhWrFS2E8PX5bZipbcTnUgoLAdJVgMvBK4ecSh9abvtXA9sBS6rqk7E3Xof8FvAd0ccx3wU8Okk1yY5YdTBaLi61k5Ap9uK92E7oY7qWlvR4XYCbCvUUV1rJ6DTbcX7WMHthAmFIUjyZODjwFur6sFRx9OPqnqkqg4E9gUOStKJ7l5JXg1sraprRx3LPP1EVb0IOAQ4se1ypxWgi+0EdLOtsJ1Ql3WxrehiOwG2FequLrYT0M22wnbChMKSa8cAfRw4t6o+Mep4BlVV9wNXAAePOJR+vRT4uXY80PnAK5L8xWhD6l9VbW5vtwIXAgeNNiINQ9fbCehcW2E7oU7qelvRsXYCbCvUQV1vJ6BzbcWKbydMKCyhdnKRjwC3VtV7Rh1Pv5I8Pcke7f3dgFcBXxxpUH2qqrdX1b5VtRo4Evi7qvrFEYfVlySr2gl0SLIK+BmgU7MLa3BdbSegu22F7YS6qKttRVfbCbCtUPd0tZ2A7rYVthMdSSgkOQ/4LPDcJJuSHD/qmPr0UuAYmkzV9e3foaMOqg97A1ckuQH4PM0Ypk4tgdJRE8Bnkvwz8Dngkqr61Ihj6gzbiZGwrRg+24kFsq0YOtuJ0bCtWADbiZGwrRi+RWknOrFspCRJkiRJGi+d6KEgSZIkSZLGiwkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJIkSZKkgZlQkCRJkiRJAzOhIEmSJEmSBmZCQZIkSZIkDcyEwjKS5Lgknxl1HJIkSZKk5c+EgiSpL0mOTHJ1koeTbG3v/2oaL09yRZIHkmwcdaySRmeOtuK/JrkpyUNJvpzkv446XknDN0c78RtJ7kzyYJKvJHlvkl1HHbNmZkJBkjSnJOuB9wP/G/gBYAJ4M/BS4AnAw8CZgD8OpBWsj7YiwOuBpwIHAyclOXI00UoahT7aiYuBF1XV9wPPB14A/PpootVcTCh0UJINSb7UZvdvSfLaHTfnQ+1Vwi8meWXPhuPabN/UVYGje7a9McmtSe5L8jdJntWzrZK8OcntSe5P8odJ0rP9l9vnTsXzorb8mUk+nuRr7fF+vec5ByW5ps083pPkPUv2DyZpQZI8Bfg94Fer6q+q6qFqfKGqjq6qb1fV56rqz4E7RxyupBHps634g6q6rqq2V9VtwEU0PyIkrQB9thNfqqr7p54CfBd4zqhi1s6ZUOimLwE/CTwF+F3gL5Ls3W57cbt9L+CdwCeS7JlkFfAB4JCq2h34j8D1AEkOB94B/Gfg6cA/AOdNO+argR8DfgQ4AvjZ9rn/BTiZ5mrD9wM/B3wjyeOA/wv8M7AP8ErgrUl+tn299wPvbzOP/w64YBH+XSQtjR8Hnkhz4i9JsxmorWgvTvwkcPNSBiVprPTVTiT5hSQPAl+n6aHwJ0OITfNgQqGDquovq+orVfXdqvoYcDtwULt5K/C+qvq3dtttwGHttu8Cz0+yW1VtqaqpL/A3A/+rqm6tqu3A/wQO7O2lAJxaVfdX1b8AVwAHtuW/BPxBVX2+zS7eUVV30SQfnl5Vv1dV36mqO4EzgKlujf8GPCfJXlW1raquWtx/JUmLaC/g6237AECSf2p7LH0ryctGGJuk8TFoW3Eyzbnonw0xRkmj1Vc7UVUfbS88/jDwx8A9owlXczGh0EFJXp/k+vaDdz/N2KK92s2bq6p6dr8LeGZVPQz8PE3yYEuSS5L8+3afZwHv73m9e2m6F+3T8zpf7bn/TeDJ7f39aHpETPcs4JlTr9m+7jtoxkgBHE/TQHwxyeeTvHqwfwVJQ/QNYK/eCZGq6j9W1R7tNr9LJMEAbUWSk2h6Nx5WVd8edqCSRmagc4qqup2mF9MfDTNI9c+TwI5pew2cAZwEPK398N1EkwAA2Kd3fgPgB4GvAFTV31TVq4C9gS+2rwNwN/Cmqtqj52+3qvqnPkK6m2bIwkzlX572mrtX1aFtLLdX1VHAM4DfB/6qHZYhafx8Fvg2cPioA5E01vpqK5K8EdgAvLKqNg0jMEljYz7nFLsy8+8NjQETCt2zCijgawBJ3kDTQ2HKM4BfT/L4dn6D/wBcmmQiyeHtj/ZvA9tohkBA043o7Ume177mU9rn9uNPgf8vyY+2y7w8p016fA54KMnbkuyWZJckz0/yY+0xfjHJ06vqu8D97Wt9d+ZDSBqldmKk3wX+KMnrkuye5HFJDqRpk2gffx/w+OZhvi/JE0YWtKSh67OtOJpmaOWr2uGQklaQPtuJX0ryjPb+AcDbgctHFLLm4HqeHVNVtyQ5jSa7913gHOAfe3a5GtifZgKTe4DXVdU32kkbf7Pdv2gmZPyV9jUvTPJk4Pw2GfAAcBnwl33E85dJngZ8lGaIxEbgmKq6qx3GcBrwZZrJV24D/lv71IOB9yR5Es2wjCOr6lvz+keRtOSq6g+SbAZ+i6YdeZhmRYe3Af8EvIxmfpUp3wL+Hlg33EgljVIfbcVtwNOAz/d0qPyLqnrzCMKVNAJ9tBPHAqe0v0++RvOb5HdGFK7mkB2H20uSJEmSJM3NIQ+SJEmSJGlgJhQkSZIkSdLATChIkqShSXJmkq1Jbuop2zPJZUlub2+f2pYnyQeS3JHkhiQvGl3kkiRpOhMKkiRpmM6imZi31wbg8qran2Ym7w1t+SE0Ew3vD5wAfHhIMUqSpD6YUJAkSUNTVVcC904rPhw4u71/NvCanvJzqnEVsEe7apEkSRoDcy4bmWQ/muU8JmiWGzy9qt6f5GTgl2mW8gB4R1Vd2j7n7cDxwCPAr1fV3+zsGHvttVetXr16zmAffvhhVq1aNed+42w51AGsx6hde+21X6+qp486jmHrt61YKl19v8zHSqnrcq9nh9qKiara0t7/Ks05BzTLEd/ds9+mtmwLs/Ccolusw+h1qJ1YVP20FV3+v+1q7F2NG7obe79xz9ZWzJlQALYD66vquiS7A9cmuazd9t6qenfvzkkOAI4Engc8E/jbJD9cVY/MdoDVq1dzzTXXzBnI5OQk69at6yPk8bUc6gDWY9SS3DXqGEah37ZiqXT1/TIfK6Wuy72eXWwrqqqSDLSmdZITaIZEMDExwbvf/e45ngHbtm3jyU9+8vyCHBPWYTx0vQ4vf/nLO9dOLIZ+zim6/B3R1di7Gjd0N/Z+457tnGLOhEJ7xWBLe/+hJLfSXB2YzeHA+VX1beDLSe4ADgI+O2eUkiRpJbonyd5VtaUd0rC1Ld8M7Nez375t2Q6q6nTgdIC1a9dWPydGXT3x62UdxsNyqIMkzVc/PRQelWQ18ELgauClwElJXg9cQ9OL4T6aZMNVPU+b6p44/bV2uJowOTk55/G3bdvW137jbDnUAayHJGlRXQwcC5za3l7UU35SkvOBFwMP9AyNkCRJI9Z3QiHJk4GPA2+tqgeTfBh4F828Cu8CTgPe2O/reTWh26yHJGk+kpwHrAP2SrIJeCdNIuGCJMcDdwFHtLtfChwK3AF8E3jD0AOWJEmz6iuhkOTxNMmEc6vqEwBVdU/P9jOAT7YP++qeKGnlSLIReIhmotbtVbU2yZ7Ax4DVwEbgiLaXk6RlrKqOmmXTK2fYt4ATlzYiSZI0X/2s8hDgI8CtVfWenvK9e7odvha4qb1/MfDRJO+hmZRxf+BzixHsjZsf4LgNl/S9/8ZTD1uMw0paHC+vqq/3PJ5ad/7UJBvax28bTWgr0+qdtKfr12x/THtrmyqpHztrW6Zbv2Y765YuFEkr2CBtEXieM1/99FB4KXAMcGOS69uydwBHJTmQZsjDRuBNAFV1c5ILgFtoVog4cWcrPEhasQ6HR88jzwYmMaEgSZJ2IskewJ8Cz6f5HfJG4Dbs9SiNRD+rPHwGyAybLt3Jc04BTllAXJKWlwI+3S4F9yftHCqzrTu/g/lM4LpUltsknuvXbJ9128Ruj92+nOo+Zbn9n0rSCvB+4FNV9bokTwCeRHOx016P0ggMtMqDJM3TT1TV5iTPAC5L8sXejTtbd34+E7guleU2iefOhpCtX7Od027c8Sti49Hrljii4Vtu/6eStJwleQrwMuA4gKr6DvCdJPZ6lEbEhIKkJVdVm9vbrUkuBA5i9nXnJUmSZvJs4GvAnyV5AXAt8BaWqNdjl3uxDTv2Gzc/MND+a/Z5yozlixn3znpizmShx+3q+2WhcZtQkLSkkqwCHldVD7X3fwb4PWZfd16SJGkmuwIvAn6tqq5O8n6a4Q2PWsxej13uxTbs2AeZOB9m7/W4mHEvVkz96ur7ZaFxm1CQtNQmgAubBWPYFfhoVX0qyeeZed15SZKkmWwCNlXV1e3jv6JJKNjrURoREwqSllRV3Qm8YIbybzDDuvOSJEkzqaqvJrk7yXOr6jaa84hb2j97PUojYEJBkiRJUlf8GnBuu8LDncAbgMdhr0dpJEwoSJIkSeqEqroeWDvDJns9SiPwuFEHIEmSJEmSuseEgiRJkiRJGphDHiRJkiRJQ7N6liUd16/ZPuNyjxtPPWypQ9I82UNBkiRJkiQNzISCJEmSJEkamAkFSZIkSZI0MBMKkiRJkiRpYCYUJEmSJEnSwEwoSJKkkUvyG0luTnJTkvOSfF+SZye5OskdST6W5AmjjlOSJH2PCQVJkjRSSfYBfh1YW1XPB3YBjgR+H3hvVT0HuA84fnRRSpKk6eZMKCTZL8kVSW5prxy8pS3fM8llSW5vb5/alifJB9qrCTckedFSV0KSJHXersBuSXYFngRsAV4B/FW7/WzgNaMJTZIkzWTXPvbZDqyvquuS7A5cm+Qy4Djg8qo6NckGYAPwNuAQYP/278XAh9tbSZKkx6iqzUneDfwL8C3g08C1///27jjGsrLM8/j3J+DKIIrgbKUX2G12ZTWsHcF0UIMxNTBOGCD2TMJ2dFgGXHZ7/sBZzJSRhn8wWU3aZEEJGtweYbpNWltE2O6g6wzLUnFN1l5FyLTSGlmmWbvT0M6uqD2TaMp59o97Csumq+ueqrp177n3+0kqdc+55977vHVuPffc57znfYEXq2qu2ewQcO6JHp9kC7AFYGpqitnZ2SVf89ixY31tN8pGtQ0zG+aW3qgxdToj2YY2RnU/SNJaWLKgUFVH6J0loKp+nuQAvQ/0TcB0s9lOYJZeQWET8LmqKuCbSc5Ksq55HkmSpN/Q9HLcBFwAvAh8Cbiy38dX1XZgO8DGjRtrenp6ycfMzs7Sz3ajbFTbcOPWr/S97cyGOTaPYBvaGNX9IElroZ8eCi9Jsh64BNgHTC0oEjwPTDW3zwV+tOBh82cUfqOgsJyzCVOnt6t6j2K1eFyq2LZDkrSKfhf4m6r6MUCSh4DLgLOSnNr0UjgPODzEGCVJ0nH6LigkeTXwZeCDVfWzJC/dV1WVpNq88HLOJtyzaw937u+/BnLwuqWfc62NSxXbdqitJKcA3wYOV9U1SS4AdgPn0OvafH1V/XKYMUoamv8DvD3Jb9G75OEKevniceBaerniBmDP0CKUJEkv09e38ySn0Ssm7Kqqh5rVL8xfypBkHXC0WX8YOH/Bwz2jIAngFuAA8JpmeX709t1JPkNv9PZ7hxXcqFnfosswwMFtVw8oEmnwqmpfkgeB79Abu+lJeicdvgLsTvLRZt19w4tSkiQdr59ZHkLvA/xAVd214K699M4WwG+eNdgL/HEz28PbgZ86foI02ZKcB1wNfLZZDo7eLmmBqrqjqt5UVW+uquur6hdV9WxVXVpVb6iqf11Vvxh2nJIk6df66aFwGXA9sD/JU82624FtwANJbgKeAzY3930VuAp4Bvh74P2rGbCkTvok8GHgzGb5HAY4evugrOWYG23Gi4HljRlzstc40Zg14zjeiOOoSJIkLV8/szx8A8gid19xgu0LuHmFcUkaE0muAY5W1RNJpts+fjnjrQzKWo650WaUdFjemDEne42ZDXMvG7NmFMelWSnHUZEkSVq+VrM8SNIyXAa8J8lVwKvojaFwN47eLkmSJHWaBQVJA1VVtwG3ATQ9FD5UVdcl+RKO3t4pDhQpSZKkhSwoSBqWW3H0dkmSJC2h7UkNrR0LCpLWTFXNArPN7WeBS4cZjyRJkqTlW3LaSEmSJEmSpONZUJAkSZIkSa15yYMkDZjX/UmSJGkc2UNBkiRJkiS1ZkFBkiRJkiS1ZkFBkiRJkiS1ZkFBkiRJkiS15qCMkqSBWM5glAe3XT2ASCRJkjQI9lCQJEmSJEmtWVCQJEmS1BlJTknyZJJHmuULkuxL8kySLyZ55bBjlCaFBQVJkiRJXXILcGDB8seBT1TVG4CfADcNJSppAllQkCRJQ5fkrCQPJvl+kgNJ3pHk7CSPJvlh8/t1w45T0nAlOQ+4GvhssxzgcuDBZpOdwB8MJThpAjkooyRpZLQdyNFBHMfK3cDXquraprvybwG3A49V1bYkW4GtwK3DDFLS0H0S+DBwZrN8DvBiVc01y4eAc0/0wCRbgC0AU1NTzM7OnvSFjh07tuQ2o2qtY5/ZMLf0Rn2YOn31nqutlf69uvp+WWncSxYUktwPXAMcrao3N+s+Avx74MfNZrdX1Veb+26j183oV8B/qKq/XHZ0kiRp7CV5LfAu4EaAqvol8Mskm4DpZrOdwCwWFKSJlWT+O8kTSabbPr6qtgPbATZu3FjT0yd/itnZWZbaZlStdew3LmNmpxOZ2TDHnfuHc8774HXTK3p8V98vK427n721A/gU8Lnj1n+iqv7TwhVJLgLeC/wr4J8A/y3Jv6yqXy07QkmSNO4uoHeS4i+SvAV4gt410lNVdaTZ5nlgakjxSRoNlwHvSXIV8CrgNfR6N52V5NSml8J5wOEhxihNlCULClX19STr+3y+TcDuqvoF8DdJngEuBf7n8kOUJElj7lTgrcCfVtW+JHfTu7zhJVVVSepED27bjRm62zV1oVFtQ5vuylOnr7yb8bCN6n4YR1V1G3AbQNND4UNVdV2SLwHXAruBG4A9w4pRmjQr6U/ygSR/DHwbmKmqn9C7XumbC7ZZtWuYoP01NaOY3MflQ8d2qF9JXgV8HfhH9HLOg1V1R5IL6H3wn0PvbOT1TTdnSZPnEHCoqvY1yw/SKyi8kGRdVR1Jsg44eqIHt+3GDN3tmrrQqLahTdfnmQ1zbB7BNrQxqvthwtwK7E7yUeBJ4L7VeNL9h3/a6v3suD6aRMstKNwL/Eegmt93Av+2zRMs58P/nl17Wl1Ts9LrYAZhXD50bIda+AVweVUdS3Ia8I0k/xX4M3qXTu1O8hl6Y6/cO8xAu6ztYIbSKKmq55P8KMkbq+oHwBXA083PDcA2POsoaYGqmqU3rgpV9Sy9XtGS1tiyCgpV9cL87SR/DjzSLB4Gzl+wqdcwSROuqgo41iye1vwUvSme/qhZvxP4CBYUpEn2p8CuZoaHZ4H305ve+oEkNwHPAZuHGJ8kSTrOsgoK890Pm8U/BL7b3N4LfD7JXfQGZbwQ+F8rjlJSpyU5hd5lDW8APg38bwY0xdMgLfcSmWFNf7QSw5y2qY17drU/Yb3h3Ne+dNvLnkZHVT0FbDzBXVescShSq15fMxvmuHHrV+zuLmki9TNt5BfoTdn0+iSHgDuA6SQX0zvLeBD4E4Cq+l6SB+h1UZwDbnaGB0lNHrg4yVnAw8CbWjy29eVRg7LcS2RWayqltTTMaZsGbeHlcF72JEmStHz9zPLwvhOsXnSgk6r6GPCxlQQlaTxV1YtJHgfegVM8SZIkSZ32imEHIGm8JfntpmcCSU4H3g0cAB6nN8UTONiaJEmS1Dnj2Z9V0ihZB+xsxlF4BfBAVT2S5GkGMMWTJEmSpLVhQUHSQFXVXwOXnGC9UzxJkiRJHeYlD5IkSZIkqTV7KEiSJEmS1NLCKWbnp5A9mXGcXtYeCpIkSZIkqTULCpIkSZIkqTULCpIkSZIkqTULCpIkSZIkqTULCpIkSZIkqTULCpIkSZIkqTULCpIkSZIkqbVThx2AJHXN+iXmGNZoc85oSZKk1WEPBUmSJEmS1JoFBUmSJEmS1JoFBUmSJEmS1JoFBUmSNBKSnJLkySSPNMsXJNmX5JkkX0zyymHHKEmSfq2vQRmT3A9cAxytqjc3684GvgisBw4Cm6vqJ0kC3A1cBfw9cGNVfWf1Q5ckafCWMwinAzku2y3AAeA1zfLHgU9U1e4knwFuAu4dVnCSpPHloNvL0+8sDzuATwGfW7BuK/BYVW1LsrVZvhX4feDC5udt9D7437ZaAUuSpPGT5DzgauBjwJ81JyguB/6o2WQn8BEsKEw8i3ySNDr6KihU1deTrD9u9SZgurm9E5ilV1DYBHyuqgr4ZpKzkqyrqiOrErGkTklyPr1i5BRQwPaqunuxXk7DilPS0H0S+DBwZrN8DvBiVc01y4eAc0/0wCRbgC0AU1NTzM7OLvlix44d62u7UTaqbZjZMLf0Ro2p02ndhjbPP2+QrzF1em/7UdwXkjRo/fZQOJGpBUWC5+l9WYDeh/2PFmw3fwDwGwWF5Xz4zyfsfo1iYh/VD/+2bIdamANmquo7Sc4EnkjyKHAjJ+7lJGnCJJm/rPKJJNNtH19V24HtABs3bqzp6aWfYnZ2ln62G2Wj2oYbW/QgmNkwx+aWbWjz/PMOXje415jZMMed+09t/RqSNA5WUlB4SVVVkmr5mNYf/vfs2sOd+/sPeRQT+6h++LdlO9SvpvB4pLn98yQH6BUZF+vlJGnyXAa8J8lVwKvojaFwN3BWklObXgrnAYeHGKMkSTrOSgoKL8xfypBkHXC0WX8YOH/Bdh4ASAKguXTqEmAfi/dyOv4xrXszDcp8j5bldLftmrY9wrpqUO2051M7VXUbcBtA00PhQ1V1XZIvAdcCu4EbgD3DilGSJL3cSgoKe+l9uG/jNz/k9wIfSLKb3mCMP3X8BElJXg18GfhgVf2sN95az8l6OS2nN9OgzPdoWU53266Z78I77gbVzlHsIddRtwK7k3wUeBK4b8jxqKMcvV2SBqPfaSO/QK9r8uuTHALuoFdIeCDJTcBzwOZm86/SmzLyGXrTRr5/lWOW1DFJTqNXTNhVVQ81qxfr5SRpglXVLL1LoKiqZ4FLhxmPJElaXL+zPLxvkbuuOMG2Bdy8kqAkjY9m6rf7gANVddeCuxbr5SRJkiSpA8a/P6ukYbsMuB7Yn+SpZt3tLN7LSZI0QbwcQZK6y4KCpIGqqm8AWeTul/VykiRJksbRcgqoB7ddPYBIVs8rhh2AJEmSJC0lyflJHk/ydJLvJbmlWX92kkeT/LD5/bphxypNCgsKkiRJkrpgDpipqouAtwM3J7kI2Ao8VlUXAo81y5LWgJc8SJIk6YQc30CjpJmK/khz++dJDgDnApvozUgHsJPeTDG3DiFEaeJYUJAkSZLUKUnWA5cA+4CpptgA8DwwtchjtgBbAKamppidnT3pa0ydDjMb5vqOaannW0vHjh1b03ja/J1Opu3ffJQMKvZB78eVvlcsKEiSJEnqjCSvBr4MfLCqftabobqnqipJnehxVbUd2A6wcePGmp6ePunr3LNrD3fu7//r0sHrTv58a2l2dpal2reablyl3kwzG+Za/c1HyaBiH/T7aqXvFcdQkCRJktQJSU6jV0zYVVUPNatfSLKuuX8dcHRY8UmTxoKCJEmSpJGXXleE+4ADVXXXgrv2Ajc0t28A9qx1bNKk6mZ/EkmSJEmT5jLgemB/kqeadbcD24AHktwEPAdsHk540uQZ64JC25GJD267ekCRSJIkSVqJqvoGkEXuvmItY5HU4yUPkiRJkiSpNQsKkiRJkiSpNQsKkiRJkiSpNQsKkiRJkiSptbEelFGSJEmSJpkD1WuQ7KEgSZKGKsn5SR5P8nSS7yW5pVl/dpJHk/yw+f26YccqSZJ+bcUFhSQHk+xP8lSSbzfrPACQJEn9mgNmquoi4O3AzUkuArYCj1XVhcBjzbIkSRoRq3XJw+9U1d8uWJ4/ANiWZGuzfOsqvZakDklyP3ANcLSq3tysOxv4IrAeOAhsrqqfDCtGadgmvTtqVR0BjjS3f57kAHAusAmYbjbbCczi8cSKtH2vSZJ0MoMaQ8EDAEnzdgCfAj63YJ1FR0knlGQ9cAmwD5hqig0AzwNTizxmC7AFYGpqitnZ2SVf59ixY31tN8qW04aZDXODCWaZpk4fvZjamm9D199PkrQcq1FQKOCvkhTwn6tqO30cACznw3/QHzpr8UEwDgcwYDvUv6r6evMFYSGLjpJeJsmrgS8DH6yqnyV56b6qquZY42WaY4/tABs3bqzp6eklX2t2dpZ+thtly2nDjSPWQ2Fmwxx37u/2GOHzbTh43fSwQ5GkNbcaGfydVXU4yT8GHk3y/YV3LnYAsJwP/3t27Rnsh87+v2v9kLbdTsfhAAZsh1asr7OOsLzi46DMF6C6fjatH+Nw1rAfg2rnoM8aj2MhNMlp9IoJu6rqoWb1C0nWVdWRJOuAo8OLUJKktTfql0Wu+Nt5VR1ufh9N8jBwKR4ASOrTyc46Nve3Lj4OynwBatTO8A3COJw17Meg2tn2TGXb99S4nQlNryvCfcCBqrprwV17gRuAbc3vPUMIT5IkLWJFszwkOSPJmfO3gd8DvsuvDwDAAwBJL/dCU2zEoqMk4DLgeuDyZtaop5JcRa+Q8O4kPwR+t1mWJEkjYqWnZaaAh5trHE8FPl9VX0vyLeCBJDcBzwGbV/g6ksaLZx0lvaSqvgFkkbuvWMtYJElS/1ZUUKiqZ4G3nGD9/8UDAElAki/QG4Dx9UkOAXfQKyRYdJSkBdpeJ7vjyjMGFIkkSf0Z/wtkJQ1VVb1vkbssOmpstf1iKEn9GPXB2SRNHgsKkiRJHbT/8E8nYpBYSWvLorjasKAgaeL1+8E5s2HOg3dJkiSpYUFBkiRNnLZn9+06rqV4OYLWgidBNGpWNG2kJEmSJEmaTBYUJEmSJElSaxYUJEmSJElSaxYUJEmSJElSaw7KKEmSJEnSGGg7QOyOK89Y0evZQ0GSJEmSJLVmQUGSJEmSJLXmJQ8rtNZdSiRJkiRJGgX2UJAkSZIkSa3ZQ0GSJElaY217uUrSKLKHgiRJkiRJas0eCmts/+GfcmPLivTBbVcPKBpp/HjGR5IkSVob9lCQJEmSJEmtDaygkOTKJD9I8kySrYN6HUndZZ6Q1A9zhaSlmCek4RjIJQ9JTgE+DbwbOAR8K8neqnp6EK837tp24fYSCXWBeUJSP8wVkpZinpCGZ1BjKFwKPFNVzwIk2Q1sAvynXgNrcQ35zIa5VmNBLKfIsRbt2HHlGQN/DQtCizJPSOqHuULSUswT0pCkqlb/SZNrgSur6t81y9cDb6uqDyzYZguwpVl8I/CDPp769cDfrnK4a20c2gC2Y9j+WVX99rCDWIl+8kSzfjm5YlC6+n5Zjklp67i3cyJyhccUnWYbhm8i8kSzvm2u6PK+7WrsXY0buht7v3GfMFcMbZaHqtoObG/zmCTfrqqNAwppTYxDG8B2aO0sJ1cMyiS9XyalrZPSznHnMUV32Qatpba5osv7tquxdzVu6G7sK417UIMyHgbOX7B8XrNOkuaZJyT1w1whaSnmCWlIBlVQ+BZwYZILkrwSeC+wd0CvJambzBOS+mGukLQU84Q0JAO55KGq5pJ8APhL4BTg/qr63io89Uh0e16hcWgD2A6t0ADzxCBN0vtlUto6Ke3sLI8pTso2jIZxaEOnmSdOqKuxdzVu6G7sK4p7IIMySpIkSZKk8TaoSx4kSZIkSdIYs6AgSZIkSZJa60RBIcmVSX6Q5JkkW4cdT7+SnJ/k8SRPJ/leklua9WcneTTJD5vfrxt2rEtJckqSJ5M80ixfkGRfs0++2AyAM9KSnJXkwSTfT3IgyTu6uC80HEkOJtmf5Kkk3x52PKslyf1Jjib57oJ1Y/l/sUhbP5LkcLNfn0py1TBj1OB19ZhioS7mo3HINeaQydLVXNGl/NDlvNDVfDCI76cjX1BIcgrwaeD3gYuA9yW5aLhR9W0OmKmqi4C3Azc3sW8FHquqC4HHmuVRdwtwYMHyx4FPVNUbgJ8ANw0lqnbuBr5WVW8C3kKvPV3cFxqe36mqi7s4x/BJ7ACuPG7duP5f7ODlbYVeLru4+fnqGsekNdTxY4rjdS0f7aD7uWYH5pCJMAa5oiv5YQfdzQs76GY+WPXvpyNfUAAuBZ6pqmer6pfAbmDTkGPqS1UdqarvNLd/Tu8L7Ln04t/ZbLYT+IOhBNinJOcBVwOfbZYDXA482GzShTa8FngXcB9AVf2yql6kY/tCWm1V9XXg/x23eiz/LxZpqyZLZ48pum4cco05ZKKYK9ZAl/NCV/PBIL6fdqGgcC7wowXLh5p1nZJkPXAJsA+YqqojzV3PA1PDiqtPnwQ+DPxDs3wO8GJVzTXLXdgnFwA/Bv6iuXTjs0nOoHv7QsNTwF8leSLJlmEHM2CT9n/xgSR/3XRfHMmulVo1Y3FMwfjko3HJNeaQ8dPlXNH1/ND1vNCZfLBa30+7UFDovCSvBr4MfLCqfrbwvurN2zmyc3cmuQY4WlVPDDuWFToVeCtwb1VdAvwdx3XlGfV9oaF7Z1W9lV73x5uTvGvYAa2FCfi/uBf4F8DFwBHgzqFGI/Vn7PJRh3ONOUSjZmzyQwfzQmfywWp+P+1CQeEwcP6C5fOadZ2Q5DR6O2tXVT3UrH4hybrm/nXA0WHF14fLgPckOUivu9fl9MYiOCvJqc02Xdgnh4BDVbWvWX6QXoGhS/tCQ1RVh5vfR4GH6XWHHFcT839RVS9U1a+q6h+AP2e896s6fkwxb4zyUedzjTlkbHU2V4xBfuhsXuhKPljt76ddKCh8C7gwvVkFXgm8F9g75Jj60ow1cB9woKruWnDXXuCG5vYNwJ61jq1fVXVbVZ1XVevp/e3/e1VdBzwOXNtsNtJtAKiq54EfJXljs+oK4Gk6tC80PEnOSHLm/G3g94DvnvxRnTYx/xfzH56NP2S896s6fEwxb8zyUedzjTlkbHUyV4xJfuhsXuhCPhjE99P0ejSMtmbKjU8CpwD3V9XHhhtRf5K8E/gfwH5+Pf7A7fSuU3kA+KfAc8Dmqhr5QT2STAMfqqprkvxzej0WzgaeBP5NVf1iiOEtKcnF9AaWfCXwLPB+ekW1zu0Lra3m/f5ws3gq8Pmu5KGlJPkCMA28HngBuAP4L4zh/8UibZ2m1zWxgIPAnyy4hlBjqKvHFPO6mo/GIdeYQyZLF3NF1/JDl/NCV/PBIL6fdqKgIEmSJEmSRksXLnmQJEmSJEkjxoKCJEmSJElqzYKCJEmSJElqzYKCJEmSJElqzYKCJEmSJElqzYKCJEmSJElqzYKCJEmSJElq7f8DG5w9deqSulAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "