-
Notifications
You must be signed in to change notification settings - Fork 286
/
Copy pathnas_manager.py
588 lines (527 loc) · 27.9 KB
/
nas_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
# Han Cai, Ligeng Zhu, Song Han
# International Conference on Learning Representations (ICLR), 2019.
from run_manager import *
class ArchSearchConfig:
def __init__(self, arch_init_type, arch_init_ratio, arch_opt_type, arch_lr,
arch_opt_param, arch_weight_decay, target_hardware, ref_value):
""" architecture parameters initialization & optimizer """
self.arch_init_type = arch_init_type
self.arch_init_ratio = arch_init_ratio
self.opt_type = arch_opt_type
self.lr = arch_lr
self.opt_param = {} if arch_opt_param is None else arch_opt_param
self.weight_decay = arch_weight_decay
self.target_hardware = target_hardware
self.ref_value = ref_value
@property
def config(self):
config = {
'type': type(self),
}
for key in self.__dict__:
if not key.startswith('_'):
config[key] = self.__dict__[key]
return config
def get_update_schedule(self, nBatch):
raise NotImplementedError
def build_optimizer(self, params):
"""
:param params: architecture parameters
:return: arch_optimizer
"""
if self.opt_type == 'adam':
return torch.optim.Adam(
params, self.lr, weight_decay=self.weight_decay, **self.opt_param
)
else:
raise NotImplementedError
class GradientArchSearchConfig(ArchSearchConfig):
def __init__(self, arch_init_type='normal', arch_init_ratio=1e-3, arch_opt_type='adam', arch_lr=1e-3,
arch_opt_param=None, arch_weight_decay=0, target_hardware=None, ref_value=None,
grad_update_arch_param_every=1, grad_update_steps=1, grad_binary_mode='full', grad_data_batch=None,
grad_reg_loss_type=None, grad_reg_loss_params=None, **kwargs):
super(GradientArchSearchConfig, self).__init__(
arch_init_type, arch_init_ratio, arch_opt_type, arch_lr, arch_opt_param, arch_weight_decay,
target_hardware, ref_value,
)
self.update_arch_param_every = grad_update_arch_param_every
self.update_steps = grad_update_steps
self.binary_mode = grad_binary_mode
self.data_batch = grad_data_batch
self.reg_loss_type = grad_reg_loss_type
self.reg_loss_params = {} if grad_reg_loss_params is None else grad_reg_loss_params
print(kwargs.keys())
def get_update_schedule(self, nBatch):
schedule = {}
for i in range(nBatch):
if (i + 1) % self.update_arch_param_every == 0:
schedule[i] = self.update_steps
return schedule
def add_regularization_loss(self, ce_loss, expected_value):
if expected_value is None:
return ce_loss
if self.reg_loss_type == 'mul#log':
alpha = self.reg_loss_params.get('alpha', 1)
beta = self.reg_loss_params.get('beta', 0.6)
# noinspection PyUnresolvedReferences
reg_loss = (torch.log(expected_value) / math.log(self.ref_value)) ** beta
return alpha * ce_loss * reg_loss
elif self.reg_loss_type == 'add#linear':
reg_lambda = self.reg_loss_params.get('lambda', 2e-1)
reg_loss = reg_lambda * (expected_value - self.ref_value) / self.ref_value
return ce_loss + reg_loss
elif self.reg_loss_type is None:
return ce_loss
else:
raise ValueError('Do not support: %s' % self.reg_loss_type)
class RLArchSearchConfig(ArchSearchConfig):
def __init__(self, arch_init_type='normal', arch_init_ratio=1e-3, arch_opt_type='adam', arch_lr=1e-3,
arch_opt_param=None, arch_weight_decay=0, target_hardware=None, ref_value=None,
rl_batch_size=10, rl_update_per_epoch=False, rl_update_steps_per_epoch=300,
rl_baseline_decay_weight=0.99, rl_tradeoff_ratio=0.1, **kwargs):
super(RLArchSearchConfig, self).__init__(
arch_init_type, arch_init_ratio, arch_opt_type, arch_lr, arch_opt_param, arch_weight_decay,
target_hardware, ref_value,
)
self.batch_size = rl_batch_size
self.update_per_epoch = rl_update_per_epoch
self.update_steps_per_epoch = rl_update_steps_per_epoch
self.baseline_decay_weight = rl_baseline_decay_weight
self.tradeoff_ratio = rl_tradeoff_ratio
self._baseline = None
print(kwargs.keys())
def get_update_schedule(self, nBatch):
schedule = {}
if self.update_per_epoch:
schedule[nBatch - 1] = self.update_steps_per_epoch
else:
rl_seg_list = get_split_list(nBatch, self.update_steps_per_epoch)
for j in range(1, len(rl_seg_list)):
rl_seg_list[j] += rl_seg_list[j - 1]
for j in rl_seg_list:
schedule[j - 1] = 1
return schedule
def calculate_reward(self, net_info):
acc = net_info['acc'] / 100
if self.target_hardware is None:
return acc
else:
return acc * ((self.ref_value / net_info[self.target_hardware]) ** self.tradeoff_ratio)
@property
def baseline(self):
return self._baseline
@baseline.setter
def baseline(self, value):
self._baseline = value
class ArchSearchRunManager:
def __init__(self, path, super_net, run_config: RunConfig, arch_search_config: ArchSearchConfig):
# init weight parameters & build weight_optimizer
self.run_manager = RunManager(path, super_net, run_config, True)
self.arch_search_config = arch_search_config
# init architecture parameters
self.net.init_arch_params(
self.arch_search_config.arch_init_type, self.arch_search_config.arch_init_ratio,
)
# build architecture optimizer
self.arch_optimizer = self.arch_search_config.build_optimizer(self.net.architecture_parameters())
self.warmup = True
self.warmup_epoch = 0
@property
def net(self):
return self.run_manager.net.module
def write_log(self, log_str, prefix, should_print=True, end='\n'):
with open(os.path.join(self.run_manager.logs_path, '%s.log' % prefix), 'a') as fout:
fout.write(log_str + end)
fout.flush()
if should_print:
print(log_str)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.run_manager.save_path, 'latest.txt')
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, 'r') as fin:
model_fname = fin.readline()
if model_fname[-1] == '\n':
model_fname = model_fname[:-1]
if model_fname is None or not os.path.exists(model_fname):
model_fname = '%s/checkpoint.pth.tar' % self.run_manager.save_path
with open(latest_fname, 'w') as fout:
fout.write(model_fname + '\n')
if self.run_manager.out_log:
print("=> loading checkpoint '{}'".format(model_fname))
if torch.cuda.is_available():
checkpoint = torch.load(model_fname)
else:
checkpoint = torch.load(model_fname, map_location='cpu')
model_dict = self.net.state_dict()
model_dict.update(checkpoint['state_dict'])
self.net.load_state_dict(model_dict)
if self.run_manager.out_log:
print("=> loaded checkpoint '{}'".format(model_fname))
# set new manual seed
new_manual_seed = int(time.time())
torch.manual_seed(new_manual_seed)
torch.cuda.manual_seed_all(new_manual_seed)
np.random.seed(new_manual_seed)
if 'epoch' in checkpoint:
self.run_manager.start_epoch = checkpoint['epoch'] + 1
if 'weight_optimizer' in checkpoint:
self.run_manager.optimizer.load_state_dict(checkpoint['weight_optimizer'])
if 'arch_optimizer' in checkpoint:
self.arch_optimizer.load_state_dict(checkpoint['arch_optimizer'])
if 'warmup' in checkpoint:
self.warmup = checkpoint['warmup']
if self.warmup and 'warmup_epoch' in checkpoint:
self.warmup_epoch = checkpoint['warmup_epoch']
""" training related methods """
def validate(self):
# get performances of current chosen network on validation set
self.run_manager.run_config.valid_loader.batch_sampler.batch_size = self.run_manager.run_config.test_batch_size
self.run_manager.run_config.valid_loader.batch_sampler.drop_last = False
# set chosen op active
self.net.set_chosen_op_active()
# remove unused modules
self.net.unused_modules_off()
# test on validation set under train mode
valid_res = self.run_manager.validate(is_test=False, use_train_mode=True, return_top5=True)
# flops of chosen network
flops = self.run_manager.net_flops()
# measure latencies of chosen op
if self.arch_search_config.target_hardware in [None, 'flops']:
latency = 0
else:
latency, _ = self.run_manager.net_latency(
l_type=self.arch_search_config.target_hardware, fast=False
)
# unused modules back
self.net.unused_modules_back()
return valid_res, flops, latency
def warm_up(self, warmup_epochs=25):
lr_max = 0.05
data_loader = self.run_manager.run_config.train_loader
nBatch = len(data_loader)
T_total = warmup_epochs * nBatch
for epoch in range(self.warmup_epoch, warmup_epochs):
print('\n', '-' * 30, 'Warmup epoch: %d' % (epoch + 1), '-' * 30, '\n')
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
self.run_manager.net.train()
end = time.time()
for i, (images, labels) in enumerate(data_loader):
data_time.update(time.time() - end)
# lr
T_cur = epoch * nBatch + i
warmup_lr = 0.5 * lr_max * (1 + math.cos(math.pi * T_cur / T_total))
for param_group in self.run_manager.optimizer.param_groups:
param_group['lr'] = warmup_lr
images, labels = images.to(self.run_manager.device), labels.to(self.run_manager.device)
# compute output
self.net.reset_binary_gates() # random sample binary gates
self.net.unused_modules_off() # remove unused module for speedup
output = self.run_manager.net(images) # forward (DataParallel)
# loss
if self.run_manager.run_config.label_smoothing > 0:
loss = cross_entropy_with_label_smoothing(
output, labels, self.run_manager.run_config.label_smoothing
)
else:
loss = self.run_manager.criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss, images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
self.run_manager.net.zero_grad() # zero grads of weight_param, arch_param & binary_param
loss.backward()
self.run_manager.optimizer.step() # update weight parameters
# unused modules back
self.net.unused_modules_back()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % self.run_manager.run_config.print_frequency == 0 or i + 1 == nBatch:
batch_log = 'Warmup Train [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' \
'Loss {losses.val:.4f} ({losses.avg:.4f})\t' \
'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})\t' \
'Top-5 acc {top5.val:.3f} ({top5.avg:.3f})\tlr {lr:.5f}'. \
format(epoch + 1, i, nBatch - 1, batch_time=batch_time, data_time=data_time,
losses=losses, top1=top1, top5=top5, lr=warmup_lr)
self.run_manager.write_log(batch_log, 'train')
valid_res, flops, latency = self.validate()
val_log = 'Warmup Valid [{0}/{1}]\tloss {2:.3f}\ttop-1 acc {3:.3f}\ttop-5 acc {4:.3f}\t' \
'Train top-1 {top1.avg:.3f}\ttop-5 {top5.avg:.3f}\tflops: {5:.1f}M'. \
format(epoch + 1, warmup_epochs, *valid_res, flops / 1e6, top1=top1, top5=top5)
if self.arch_search_config.target_hardware not in [None, 'flops']:
val_log += '\t' + self.arch_search_config.target_hardware + ': %.3fms' % latency
self.run_manager.write_log(val_log, 'valid')
self.warmup = epoch + 1 < warmup_epochs
state_dict = self.net.state_dict()
# rm architecture parameters & binary gates
for key in list(state_dict.keys()):
if 'AP_path_alpha' in key or 'AP_path_wb' in key:
state_dict.pop(key)
checkpoint = {
'state_dict': state_dict,
'warmup': self.warmup,
}
if self.warmup:
checkpoint['warmup_epoch'] = epoch,
self.run_manager.save_model(checkpoint, model_name='warmup.pth.tar')
def train(self, fix_net_weights=False):
data_loader = self.run_manager.run_config.train_loader
nBatch = len(data_loader)
if fix_net_weights:
data_loader = [(0, 0)] * nBatch
arch_param_num = len(list(self.net.architecture_parameters()))
binary_gates_num = len(list(self.net.binary_gates()))
weight_param_num = len(list(self.net.weight_parameters()))
print(
'#arch_params: %d\t#binary_gates: %d\t#weight_params: %d' %
(arch_param_num, binary_gates_num, weight_param_num)
)
update_schedule = self.arch_search_config.get_update_schedule(nBatch)
for epoch in range(self.run_manager.start_epoch, self.run_manager.run_config.n_epochs):
print('\n', '-' * 30, 'Train epoch: %d' % (epoch + 1), '-' * 30, '\n')
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
entropy = AverageMeter()
# switch to train mode
self.run_manager.net.train()
end = time.time()
for i, (images, labels) in enumerate(data_loader):
data_time.update(time.time() - end)
# lr
lr = self.run_manager.run_config.adjust_learning_rate(
self.run_manager.optimizer, epoch, batch=i, nBatch=nBatch
)
# network entropy
net_entropy = self.net.entropy()
entropy.update(net_entropy.data.item() / arch_param_num, 1)
# train weight parameters if not fix_net_weights
if not fix_net_weights:
images, labels = images.to(self.run_manager.device), labels.to(self.run_manager.device)
# compute output
self.net.reset_binary_gates() # random sample binary gates
self.net.unused_modules_off() # remove unused module for speedup
output = self.run_manager.net(images) # forward (DataParallel)
# loss
if self.run_manager.run_config.label_smoothing > 0:
loss = cross_entropy_with_label_smoothing(
output, labels, self.run_manager.run_config.label_smoothing
)
else:
loss = self.run_manager.criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss, images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
self.run_manager.net.zero_grad() # zero grads of weight_param, arch_param & binary_param
loss.backward()
self.run_manager.optimizer.step() # update weight parameters
# unused modules back
self.net.unused_modules_back()
# skip architecture parameter updates in the first epoch
if epoch > 0:
# update architecture parameters according to update_schedule
for j in range(update_schedule.get(i, 0)):
start_time = time.time()
if isinstance(self.arch_search_config, RLArchSearchConfig):
reward_list, net_info_list = self.rl_update_step(fast=True)
used_time = time.time() - start_time
log_str = 'REINFORCE [%d-%d]\tTime %.4f\tMean Reward %.4f\t%s' % (
epoch + 1, i, used_time, sum(reward_list) / len(reward_list), net_info_list
)
self.write_log(log_str, prefix='rl', should_print=False)
elif isinstance(self.arch_search_config, GradientArchSearchConfig):
arch_loss, exp_value = self.gradient_step()
used_time = time.time() - start_time
log_str = 'Architecture [%d-%d]\t Time %.4f\t Loss %.4f\t %s %s' % \
(epoch + 1, i, used_time, arch_loss,
self.arch_search_config.target_hardware, exp_value)
self.write_log(log_str, prefix='gradient', should_print=False)
else:
raise ValueError('do not support: %s' % type(self.arch_search_config))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# training log
if i % self.run_manager.run_config.print_frequency == 0 or i + 1 == nBatch:
batch_log = 'Train [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t' \
'Loss {losses.val:.4f} ({losses.avg:.4f})\t' \
'Entropy {entropy.val:.5f} ({entropy.avg:.5f})\t' \
'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})\t' \
'Top-5 acc {top5.val:.3f} ({top5.avg:.3f})\tlr {lr:.5f}'. \
format(epoch + 1, i, nBatch - 1, batch_time=batch_time, data_time=data_time,
losses=losses, entropy=entropy, top1=top1, top5=top5, lr=lr)
self.run_manager.write_log(batch_log, 'train')
# print current network architecture
self.write_log('-' * 30 + 'Current Architecture [%d]' % (epoch + 1) + '-' * 30, prefix='arch')
for idx, block in enumerate(self.net.blocks):
self.write_log('%d. %s' % (idx, block.module_str), prefix='arch')
self.write_log('-' * 60, prefix='arch')
# validate
if (epoch + 1) % self.run_manager.run_config.validation_frequency == 0:
(val_loss, val_top1, val_top5), flops, latency = self.validate()
self.run_manager.best_acc = max(self.run_manager.best_acc, val_top1)
val_log = 'Valid [{0}/{1}]\tloss {2:.3f}\ttop-1 acc {3:.3f} ({4:.3f})\ttop-5 acc {5:.3f}\t' \
'Train top-1 {top1.avg:.3f}\ttop-5 {top5.avg:.3f}\t' \
'Entropy {entropy.val:.5f}\t' \
'Latency-{6}: {7:.3f}ms\tFlops: {8:.2f}M'. \
format(epoch + 1, self.run_manager.run_config.n_epochs, val_loss, val_top1,
self.run_manager.best_acc, val_top5, self.arch_search_config.target_hardware,
latency, flops / 1e6, entropy=entropy, top1=top1, top5=top5)
self.run_manager.write_log(val_log, 'valid')
# save model
self.run_manager.save_model({
'warmup': False,
'epoch': epoch,
'weight_optimizer': self.run_manager.optimizer.state_dict(),
'arch_optimizer': self.arch_optimizer.state_dict(),
'state_dict': self.net.state_dict()
})
# convert to normal network according to architecture parameters
normal_net = self.net.cpu().convert_to_normal_net()
print('Total training params: %.2fM' % (count_parameters(normal_net) / 1e6))
os.makedirs(os.path.join(self.run_manager.path, 'learned_net'), exist_ok=True)
json.dump(normal_net.config, open(os.path.join(self.run_manager.path, 'learned_net/net.config'), 'w'), indent=4)
json.dump(
self.run_manager.run_config.config,
open(os.path.join(self.run_manager.path, 'learned_net/run.config'), 'w'), indent=4,
)
torch.save(
{'state_dict': normal_net.state_dict(), 'dataset': self.run_manager.run_config.dataset},
os.path.join(self.run_manager.path, 'learned_net/init')
)
def rl_update_step(self, fast=True):
assert isinstance(self.arch_search_config, RLArchSearchConfig)
# prepare data
self.run_manager.run_config.valid_loader.batch_sampler.batch_size = self.run_manager.run_config.test_batch_size
self.run_manager.run_config.valid_loader.batch_sampler.drop_last = True
# switch to train mode
self.run_manager.net.train()
# sample a batch of data from validation set
images, labels = self.run_manager.run_config.valid_next_batch
images, labels = images.to(self.run_manager.device), labels.to(self.run_manager.device)
# sample nets and get their validation accuracy, latency, etc
grad_buffer = []
reward_buffer = []
net_info_buffer = []
for i in range(self.arch_search_config.batch_size):
self.net.reset_binary_gates() # random sample binary gates
self.net.unused_modules_off() # remove unused module for speedup
# validate the sampled network
with torch.no_grad():
output = self.run_manager.net(images)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
net_info = {'acc': acc1[0].item()}
# get additional net info for calculating the reward
if self.arch_search_config.target_hardware is None:
pass
elif self.arch_search_config.target_hardware == 'flops':
net_info['flops'] = self.run_manager.net_flops()
else:
net_info[self.arch_search_config.target_hardware], _ = self.run_manager.net_latency(
l_type=self.arch_search_config.target_hardware, fast=fast
)
net_info_buffer.append(net_info)
# calculate reward according to net_info
reward = self.arch_search_config.calculate_reward(net_info)
# loss term
obj_term = 0
for m in self.net.redundant_modules:
if m.AP_path_alpha.grad is not None:
m.AP_path_alpha.grad.data.zero_()
obj_term = obj_term + m.log_prob
loss_term = -obj_term
# backward
loss_term.backward()
# take out gradient dict
grad_list = []
for m in self.net.redundant_modules:
grad_list.append(m.AP_path_alpha.grad.data.clone())
grad_buffer.append(grad_list)
reward_buffer.append(reward)
# unused modules back
self.net.unused_modules_back()
# update baseline function
avg_reward = sum(reward_buffer) / self.arch_search_config.batch_size
if self.arch_search_config.baseline is None:
self.arch_search_config.baseline = avg_reward
else:
self.arch_search_config.baseline += self.arch_search_config.baseline_decay_weight * \
(avg_reward - self.arch_search_config.baseline)
# assign gradients
for idx, m in enumerate(self.net.redundant_modules):
m.AP_path_alpha.grad.data.zero_()
for j in range(self.arch_search_config.batch_size):
m.AP_path_alpha.grad.data += (reward_buffer[j] - self.arch_search_config.baseline) * grad_buffer[j][idx]
m.AP_path_alpha.grad.data /= self.arch_search_config.batch_size
# apply gradients
self.arch_optimizer.step()
return reward_buffer, net_info_buffer
def gradient_step(self):
assert isinstance(self.arch_search_config, GradientArchSearchConfig)
if self.arch_search_config.data_batch is None:
self.run_manager.run_config.valid_loader.batch_sampler.batch_size = \
self.run_manager.run_config.train_batch_size
else:
self.run_manager.run_config.valid_loader.batch_sampler.batch_size = self.arch_search_config.data_batch
self.run_manager.run_config.valid_loader.batch_sampler.drop_last = True
# switch to train mode
self.run_manager.net.train()
# Mix edge mode
MixedEdge.MODE = self.arch_search_config.binary_mode
time1 = time.time() # time
# sample a batch of data from validation set
images, labels = self.run_manager.run_config.valid_next_batch
images, labels = images.to(self.run_manager.device), labels.to(self.run_manager.device)
time2 = time.time() # time
# compute output
self.net.reset_binary_gates() # random sample binary gates
self.net.unused_modules_off() # remove unused module for speedup
output = self.run_manager.net(images)
time3 = time.time() # time
# loss
ce_loss = self.run_manager.criterion(output, labels)
if self.arch_search_config.target_hardware is None:
expected_value = None
elif self.arch_search_config.target_hardware == 'mobile':
expected_value = self.net.expected_latency(self.run_manager.latency_estimator)
elif self.arch_search_config.target_hardware == 'flops':
data_shape = [1] + list(self.run_manager.run_config.data_provider.data_shape)
input_var = torch.zeros(data_shape, device=self.run_manager.device)
expected_value = self.net.expected_flops(input_var)
else:
raise NotImplementedError
loss = self.arch_search_config.add_regularization_loss(ce_loss, expected_value)
# compute gradient and do SGD step
self.run_manager.net.zero_grad() # zero grads of weight_param, arch_param & binary_param
loss.backward()
# set architecture parameter gradients
self.net.set_arch_param_grad()
self.arch_optimizer.step()
if MixedEdge.MODE == 'two':
self.net.rescale_updated_arch_param()
# back to normal mode
self.net.unused_modules_back()
MixedEdge.MODE = None
time4 = time.time() # time
self.write_log(
'(%.4f, %.4f, %.4f)' % (time2 - time1, time3 - time2, time4 - time3), 'gradient',
should_print=False, end='\t'
)
return loss.data.item(), expected_value.item() if expected_value is not None else None