forked from pololu/vl53l0x-arduino
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathVL53L0X.cpp
966 lines (766 loc) · 29.8 KB
/
VL53L0X.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
#include "VL53L0X.hpp"
#include "I2Cdev.hpp"
#include <cerrno>
// strerror()
#include <cstring>
// struct timespec, clock_gettime()
#include <ctime>
#include <string>
#include <unistd.h>
#include <stdexcept>
/*** Defines ***/
// Record the current time to check an upcoming timeout against
#define startTimeout() (this->timeoutStartMilliseconds = milliseconds())
// Check if timeout is enabled (set to nonzero value) and has expired
#define checkTimeoutExpired() (this->ioTimeout > 0 && (milliseconds() - this->timeoutStartMilliseconds) > this->ioTimeout)
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs from register value based on VL53L0X_decode_vcsel_period()
#define decodeVcselPeriod(registerValue) (((registerValue) + 1) << 1)
// Encode VCSEL pulse period register value from period in PCLKs based on VL53L0X_encode_vcsel_period()
#define encodeVcselPeriod(periodPCLKs) (((periodPCLKs) >> 1) - 1)
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs based on VL53L0X_calc_macro_period_ps()
// PLL_period_ps = 1655, macro_period_vclks = 2304
#define calcMacroPeriod(vcselPeriodPCLKs) ((((uint32_t)2304 * (vcselPeriodPCLKs) * 1655) + 500) / 1000)
/*** Helper functions ***/
uint64_t milliseconds() {
timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (ts.tv_sec * 1000 + ts.tv_nsec / 1000000);
}
/*** Constructors ***/
VL53L0X::VL53L0X(const int16_t xshutGPIOPin, bool ioMode2v8, const uint8_t address) {
this->xshutGPIOPin = xshutGPIOPin;
this->ioMode2v8 = ioMode2v8;
this->address = address;
this->gpioInitialized = false;
this->ioTimeout = 0;
this->didTimeout = false;
this->measurementTimingBudgetMicroseconds = 33000;
this->stopVariable = 0;
this->timeoutStartMilliseconds = milliseconds();
}
/*** Public Methods ***/
void VL53L0X::initialize() {
this->initGPIO();
this->initHardware();
}
void VL53L0X::powerOn() {
this->initGPIO();
if (this->xshutGPIOPin >= 0) {
std::lock_guard<std::mutex> guard(this->fileAccessMutex);
std::ofstream file;
file.open(this->gpioFilename.c_str(), std::ofstream::out);
if (!file.is_open() || !file.good()) {
file.close();
throw(std::runtime_error(std::string("Failed opening file: ") + this->gpioFilename));
}
file << "1";
file.close();
// t_boot is 1.2ms max, wait 2ms just to be sure
usleep(2000);
}
}
void VL53L0X::powerOff() {
this->initGPIO();
if (this->xshutGPIOPin >= 0) {
std::lock_guard<std::mutex> guard(this->fileAccessMutex);
std::ofstream file;
file.open(this->gpioFilename.c_str(), std::ofstream::out);
if (!file.is_open() || !file.good()) {
file.close();
throw(std::runtime_error(std::string("Failed opening file: ") + this->gpioFilename));
}
file << "0";
file.close();
}
}
void VL53L0X::setAddress(uint8_t newAddress) {
// Ensure power state
this->powerOn();
// Set new I2C address
this->writeRegister(I2C_SLAVE_DEVICE_ADDRESS, newAddress & 0x7F);
// Save new address
this->address = newAddress;
}
bool VL53L0X::setSignalRateLimit(float limitMCPS) {
if (limitMCPS < 0 || limitMCPS > 511.99) {
return false;
}
// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
this->writeRegister16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limitMCPS * (1 << 7));
return true;
}
float VL53L0X::getSignalRateLimit() {
return (float)this->readRegister16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
}
bool VL53L0X::setMeasurementTimingBudget(uint32_t budgetMicroseconds) {
// note that these are different than values in get_
uint16_t const START_OVERHEAD = 1320;
uint16_t const END_OVERHEAD = 960;
uint16_t const MSRC_OVERHEAD = 660;
uint16_t const TCC_OVERHEAD = 590;
uint16_t const DSS_OVERHEAD = 690;
uint16_t const PRE_RANGE_OVERHEAD = 660;
uint16_t const FINAL_RANGE_OVERHEAD = 550;
uint32_t const MIN_TIMING_BUDGET = 20000;
if (budgetMicroseconds < MIN_TIMING_BUDGET) {
return false;
}
VL53L0XSequenceStepEnables enables;
VL53L0XSequenceStepTimeouts timeouts;
this->getSequenceStepEnables(&enables);
this->getSequenceStepTimeouts(&enables, &timeouts);
uint32_t usedBudgetMicroseconds = START_OVERHEAD + END_OVERHEAD;
if (enables.tcc) {
usedBudgetMicroseconds += (timeouts.msrcDssTccMicroseconds + TCC_OVERHEAD);
}
if (enables.dss) {
usedBudgetMicroseconds += 2 * (timeouts.msrcDssTccMicroseconds + DSS_OVERHEAD);
} else if (enables.msrc) {
usedBudgetMicroseconds += (timeouts.msrcDssTccMicroseconds + MSRC_OVERHEAD);
}
if (enables.preRange) {
usedBudgetMicroseconds += (timeouts.preRangeMicroseconds + PRE_RANGE_OVERHEAD);
}
if (enables.finalRange) {
usedBudgetMicroseconds += FINAL_RANGE_OVERHEAD;
}
// "Note that the final range timeout is determined by the timing
// budget and the sum of all other timeouts within the sequence.
// If there is no room for the final range timeout, then an error
// will be set. Otherwise the remaining time will be applied to
// the final range."
if (usedBudgetMicroseconds > budgetMicroseconds) {
// "Requested timeout too small."
return false;
}
uint32_t finalRangeTimeoutMicroseconds = budgetMicroseconds - usedBudgetMicroseconds;
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t finalRangeTimeoutMCLKs = timeoutMicrosecondsToMclks(finalRangeTimeoutMicroseconds, timeouts.finalRangeVCSELPeriodPCLKs);
if (enables.preRange) {
finalRangeTimeoutMCLKs += timeouts.preRangeMCLKs;
}
this->writeRegister16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(finalRangeTimeoutMCLKs));
// set_sequence_step_timeout() end
// store for internal reuse
this->measurementTimingBudgetMicroseconds = budgetMicroseconds;
return true;
}
uint32_t VL53L0X::getMeasurementTimingBudget() {
// note that these are different than values in set_
uint16_t const START_OVERHEAD = 1910;
uint16_t const END_OVERHEAD = 960;
uint16_t const MSRC_OVERHEAD = 660;
uint16_t const TCC_OVERHEAD = 590;
uint16_t const DSS_OVERHEAD = 690;
uint16_t const PRE_RANGE_OVERHEAD = 660;
uint16_t const FINAL_RANGE_OVERHEAD = 550;
VL53L0XSequenceStepEnables enables;
VL53L0XSequenceStepTimeouts timeouts;
this->getSequenceStepEnables(&enables);
this->getSequenceStepTimeouts(&enables, &timeouts);
// "Start and end overhead times always present"
uint32_t budgetMicroseconds = START_OVERHEAD + END_OVERHEAD;
if (enables.tcc) {
budgetMicroseconds += (timeouts.msrcDssTccMicroseconds + TCC_OVERHEAD);
}
if (enables.dss) {
budgetMicroseconds += 2 * (timeouts.msrcDssTccMicroseconds + DSS_OVERHEAD);
} else if (enables.msrc) {
budgetMicroseconds += (timeouts.msrcDssTccMicroseconds + MSRC_OVERHEAD);
}
if (enables.preRange) {
budgetMicroseconds += (timeouts.preRangeMicroseconds + PRE_RANGE_OVERHEAD);
}
if (enables.finalRange) {
budgetMicroseconds += (timeouts.finalRangeMicroseconds + FINAL_RANGE_OVERHEAD);
}
// store for internal reuse
this->measurementTimingBudgetMicroseconds = budgetMicroseconds;
return budgetMicroseconds;
}
bool VL53L0X::setVcselPulsePeriod(vl53l0xVcselPeriodType type, uint8_t periodPCLKs) {
uint8_t vcselPeriodValue = encodeVcselPeriod(periodPCLKs);
VL53L0XSequenceStepEnables enables;
VL53L0XSequenceStepTimeouts timeouts;
this->getSequenceStepEnables(&enables);
this->getSequenceStepTimeouts(&enables, &timeouts);
// "Apply specific settings for the requested clock period"
// "Re-calculate and apply timeouts, in macro periods"
// "When the VCSEL period for the pre or final range is changed,
// the corresponding timeout must be read from the device using
// the current VCSEL period, then the new VCSEL period can be
// applied. The timeout then must be written back to the device
// using the new VCSEL period.
//
// For the MSRC timeout, the same applies - this timeout being
// dependant on the pre-range vcsel period."
if (type == VcselPeriodPreRange) {
// "Set phase check limits"
switch (periodPCLKs) {
case 12:
this->writeRegister(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
break;
case 14:
this->writeRegister(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
break;
case 16:
this->writeRegister(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
break;
case 18:
this->writeRegister(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
break;
default:
// invalid period
return false;
}
this->writeRegister(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
// apply new VCSEL period
this->writeRegister(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcselPeriodValue);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
uint16_t newPreRangeTimeoutMCLKs = timeoutMicrosecondsToMclks(timeouts.preRangeMicroseconds, periodPCLKs);
this->writeRegister16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(newPreRangeTimeoutMCLKs));
// set_sequence_step_timeout() end
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
uint16_t newMsrcTimeoutMCLKs = timeoutMicrosecondsToMclks(timeouts.msrcDssTccMicroseconds, periodPCLKs);
this->writeRegister(MSRC_CONFIG_TIMEOUT_MACROP, (newMsrcTimeoutMCLKs > 256) ? 255 : (newMsrcTimeoutMCLKs - 1));
// set_sequence_step_timeout() end
} else if (type == VcselPeriodFinalRange) {
switch (periodPCLKs) {
case 8:
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
this->writeRegister(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
this->writeRegister(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
this->writeRegister(0xFF, 0x01);
this->writeRegister(ALGO_PHASECAL_LIM, 0x30);
this->writeRegister(0xFF, 0x00);
break;
case 10:
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
this->writeRegister(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
this->writeRegister(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
this->writeRegister(0xFF, 0x01);
this->writeRegister(ALGO_PHASECAL_LIM, 0x20);
this->writeRegister(0xFF, 0x00);
break;
case 12:
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
this->writeRegister(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
this->writeRegister(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
this->writeRegister(0xFF, 0x01);
this->writeRegister(ALGO_PHASECAL_LIM, 0x20);
this->writeRegister(0xFF, 0x00);
break;
case 14:
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
this->writeRegister(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
this->writeRegister(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
this->writeRegister(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
this->writeRegister(0xFF, 0x01);
this->writeRegister(ALGO_PHASECAL_LIM, 0x20);
this->writeRegister(0xFF, 0x00);
break;
default:
// invalid period
return false;
}
// apply new VCSEL period
this->writeRegister(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcselPeriodValue);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t newFinalRangeTimeoutMCLKs = timeoutMicrosecondsToMclks(timeouts.finalRangeMicroseconds, periodPCLKs);
if (enables.preRange) {
newFinalRangeTimeoutMCLKs += timeouts.preRangeMCLKs;
}
this->writeRegister16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(newFinalRangeTimeoutMCLKs));
// set_sequence_step_timeout end
} else {
// invalid type
return false;
}
// "Finally, the timing budget must be re-applied"
setMeasurementTimingBudget(this->measurementTimingBudgetMicroseconds);
// "Perform the phase calibration. This is needed after changing on vcsel period."
// VL53L0X_perform_phase_calibration() begin
uint8_t sequenceConfig = this->readRegister(SYSTEM_SEQUENCE_CONFIG);
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0x02);
performSingleRefCalibration(0x0);
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, sequenceConfig);
// VL53L0X_perform_phase_calibration() end
return true;
}
uint8_t VL53L0X::getVcselPulsePeriod(vl53l0xVcselPeriodType type) {
if (type == VcselPeriodPreRange) {
return decodeVcselPeriod(this->readRegister(PRE_RANGE_CONFIG_VCSEL_PERIOD));
} else if (type == VcselPeriodFinalRange) {
return decodeVcselPeriod(this->readRegister(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
} else {
return 255;
}
}
void VL53L0X::startContinuous(uint32_t periodMilliseconds) {
this->writeRegister(0x80, 0x01);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->writeRegister(0x91, this->stopVariable);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x00);
if (periodMilliseconds != 0) {
// continuous timed mode
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
uint16_t oscCalibrateValue = this->readRegister16Bit(OSC_CALIBRATE_VAL);
if (oscCalibrateValue != 0) {
periodMilliseconds *= oscCalibrateValue;
}
this->writeRegister32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, periodMilliseconds);
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
// VL53L0X_REG_SYSRANGE_MODE_TIMED
this->writeRegister(SYSRANGE_START, 0x04);
} else {
// continuous back-to-back mode
// VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
this->writeRegister(SYSRANGE_START, 0x02);
}
}
void VL53L0X::stopContinuous() {
// VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
this->writeRegister(SYSRANGE_START, 0x01);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->writeRegister(0x91, 0x00);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
}
uint16_t VL53L0X::readRangeContinuousMillimeters() {
startTimeout();
while ((this->readRegister(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
if (checkTimeoutExpired()) {
this->didTimeout = true;
return 65535;
}
usleep(1);
}
// assumptions: Linearity Corrective Gain is 1000 (default);
// fractional ranging is not enabled
// Note: reading 16-bit register was working on Arduino but here it's not, thus double read and manual addition
uint16_t range = this->readRegister16Bit(RESULT_RANGE_STATUS + 10);
// uint8_t rangeA = this->readRegister(RESULT_RANGE_STATUS + 10);
// uint8_t rangeB = this->readRegister(RESULT_RANGE_STATUS + 11);
// uint16_t range = ((uint16_t)(rangeA)<<8) + (uint16_t)(rangeB);
this->writeRegister(SYSTEM_INTERRUPT_CLEAR, 0x01);
return range;
}
uint16_t VL53L0X::readRangeSingleMillimeters() {
this->writeRegister(0x80, 0x01);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->writeRegister(0x91, this->stopVariable);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x00);
this->writeRegister(SYSRANGE_START, 0x01);
// "Wait until start bit has been cleared"
startTimeout();
while (this->readRegister(SYSRANGE_START) & 0x01) {
if (checkTimeoutExpired()) {
this->didTimeout = true;
return 65535;
}
usleep(1);
}
return readRangeContinuousMillimeters();
}
bool VL53L0X::timeoutOccurred() {
bool tmp = this->didTimeout;
this->didTimeout = false;
return tmp;
}
/*** Private Methods ***/
void VL53L0X::initGPIO() {
if (this->gpioInitialized) {
return;
}
// Set XSHUT pin mode (if pin set)
if (this->xshutGPIOPin >= 0) {
std::string gpioDirectionFilename = std::string("/sys/class/gpio/gpio") + std::to_string(this->xshutGPIOPin) + std::string("/direction");
this->gpioFilename = std::string("/sys/class/gpio/gpio") + std::to_string(this->xshutGPIOPin) + std::string("/value");
std::lock_guard<std::mutex> guard(this->fileAccessMutex);
// Ensure that the GPIO pin is exported
std::ofstream file;
file.open("/sys/class/gpio/export", std::ofstream::out);
if (!file.is_open() || !file.good()) {
file.close();
throw(std::runtime_error("Failed opening file: /sys/class/gpio/export"));
}
file << this->xshutGPIOPin;
file.close();
// Sleep for 100ms - exporting GPIO pin on RPi might take non-zero time, as per issue #7 (https://github.com/mjbogusz/vl53l0x-linux/issues/7)
usleep(100000);
// Set the GPIO direction to output
file.open(gpioDirectionFilename.c_str(), std::ofstream::out);
if (!file.is_open() || !file.good()) {
file.close();
throw(std::runtime_error(std::string("Failed opening file: ") + gpioDirectionFilename));
}
file << "out";
file.close();
}
this->gpioInitialized = true;
}
void VL53L0X::initHardware() {
// Enable the sensor
this->powerOn();
// VL53L0X_DataInit() begin
// Sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
if (this->ioMode2v8) {
// set bit 0
this->writeRegister(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, this->readRegister(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
}
// "Set I2C standard mode"
this->writeRegister(0x88, 0x00);
this->writeRegister(0x80, 0x01);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->stopVariable = this->readRegister(0x91);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x00);
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
this->writeRegister(MSRC_CONFIG_CONTROL, this->readRegister(MSRC_CONFIG_CONTROL) | 0x12);
// set final range signal rate limit to 0.25 MCPS (million counts per second)
this->setSignalRateLimit(0.25);
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0xFF);
// VL53L0X_DataInit() end
// VL53L0X_StaticInit() begin
uint8_t spadCount;
bool spadTypeIsAperture;
if (!this->getSPADInfo(&spadCount, &spadTypeIsAperture)) {
throw(std::runtime_error("Failed retrieving SPAD info!"));
}
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in the API,
// but the same data seems to be more easily readable from GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
uint8_t refSPADMap[6];
this->readRegisterMultiple(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, refSPADMap, 6);
// -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
this->writeRegister(0xFF, 0x01);
this->writeRegister(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
this->writeRegister(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
this->writeRegister(0xFF, 0x00);
this->writeRegister(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
// 12 is the first aperture spad
uint8_t firstSPADToEnable = spadTypeIsAperture ? 12 : 0;
uint8_t spadsEnabled = 0;
for (uint8_t i = 0; i < 48; i++) {
if (i < firstSPADToEnable || spadsEnabled == spadCount) {
// This bit is lower than the first one that should be enabled, or (reference_spad_count) bits have already been enabled, so zero this bit
refSPADMap[i / 8] &= ~(1 << (i % 8));
} else if ((refSPADMap[i / 8] >> (i % 8)) & 0x1) {
spadsEnabled++;
}
}
this->writeRegisterMultiple(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, refSPADMap, 6);
// -- VL53L0X_set_reference_spads() end
// -- VL53L0X_load_tuning_settings() begin
// DefaultTuningSettings from vl53l0x_tuning.h
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x09, 0x00);
this->writeRegister(0x10, 0x00);
this->writeRegister(0x11, 0x00);
this->writeRegister(0x24, 0x01);
this->writeRegister(0x25, 0xFF);
this->writeRegister(0x75, 0x00);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x4E, 0x2C);
this->writeRegister(0x48, 0x00);
this->writeRegister(0x30, 0x20);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x30, 0x09);
this->writeRegister(0x54, 0x00);
this->writeRegister(0x31, 0x04);
this->writeRegister(0x32, 0x03);
this->writeRegister(0x40, 0x83);
this->writeRegister(0x46, 0x25);
this->writeRegister(0x60, 0x00);
this->writeRegister(0x27, 0x00);
this->writeRegister(0x50, 0x06);
this->writeRegister(0x51, 0x00);
this->writeRegister(0x52, 0x96);
this->writeRegister(0x56, 0x08);
this->writeRegister(0x57, 0x30);
this->writeRegister(0x61, 0x00);
this->writeRegister(0x62, 0x00);
this->writeRegister(0x64, 0x00);
this->writeRegister(0x65, 0x00);
this->writeRegister(0x66, 0xA0);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x22, 0x32);
this->writeRegister(0x47, 0x14);
this->writeRegister(0x49, 0xFF);
this->writeRegister(0x4A, 0x00);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x7A, 0x0A);
this->writeRegister(0x7B, 0x00);
this->writeRegister(0x78, 0x21);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x23, 0x34);
this->writeRegister(0x42, 0x00);
this->writeRegister(0x44, 0xFF);
this->writeRegister(0x45, 0x26);
this->writeRegister(0x46, 0x05);
this->writeRegister(0x40, 0x40);
this->writeRegister(0x0E, 0x06);
this->writeRegister(0x20, 0x1A);
this->writeRegister(0x43, 0x40);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x34, 0x03);
this->writeRegister(0x35, 0x44);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x31, 0x04);
this->writeRegister(0x4B, 0x09);
this->writeRegister(0x4C, 0x05);
this->writeRegister(0x4D, 0x04);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x44, 0x00);
this->writeRegister(0x45, 0x20);
this->writeRegister(0x47, 0x08);
this->writeRegister(0x48, 0x28);
this->writeRegister(0x67, 0x00);
this->writeRegister(0x70, 0x04);
this->writeRegister(0x71, 0x01);
this->writeRegister(0x72, 0xFE);
this->writeRegister(0x76, 0x00);
this->writeRegister(0x77, 0x00);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x0D, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x01);
this->writeRegister(0x01, 0xF8);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x8E, 0x01);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x00);
// -- VL53L0X_load_tuning_settings() end
// "Set interrupt config to new sample ready"
// -- VL53L0X_SetGpioConfig() begin
this->writeRegister(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
// active low
this->writeRegister(GPIO_HV_MUX_ACTIVE_HIGH, this->readRegister(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10);
this->writeRegister(SYSTEM_INTERRUPT_CLEAR, 0x01);
// -- VL53L0X_SetGpioConfig() end
this->measurementTimingBudgetMicroseconds = this->getMeasurementTimingBudget();
// "Disable MSRC and TCC by default"
// MSRC = Minimum Signal Rate Check
// TCC = Target CentreCheck
// -- VL53L0X_SetSequenceStepEnable() begin
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// -- VL53L0X_SetSequenceStepEnable() end
// "Recalculate timing budget"
this->setMeasurementTimingBudget(this->measurementTimingBudgetMicroseconds);
// VL53L0X_StaticInit() end
// VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
// -- VL53L0X_perform_vhv_calibration() begin
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0x01);
if (!this->performSingleRefCalibration(0x40)) {
throw(std::runtime_error("Failed performing ref/vhv calibration!"));
}
// -- VL53L0X_perform_vhv_calibration() end
// -- VL53L0X_perform_phase_calibration() begin
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0x02);
if (!this->performSingleRefCalibration(0x00)) {
throw(std::runtime_error("Failed performing ref/phase calibration!"));
}
// -- VL53L0X_perform_phase_calibration() end
// "restore the previous Sequence Config"
this->writeRegister(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// VL53L0X_PerformRefCalibration() end
}
bool VL53L0X::getSPADInfo(uint8_t* count, bool* typeIsAperture) {
uint8_t tmp;
this->writeRegister(0x80, 0x01);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x00);
this->writeRegister(0xFF, 0x06);
this->writeRegister(0x83, this->readRegister(0x83) | 0x04);
this->writeRegister(0xFF, 0x07);
this->writeRegister(0x81, 0x01);
this->writeRegister(0x80, 0x01);
this->writeRegister(0x94, 0x6b);
this->writeRegister(0x83, 0x00);
startTimeout();
while (this->readRegister(0x83) == 0x00) {
if (checkTimeoutExpired()) {
return false;
}
usleep(1);
}
this->writeRegister(0x83, 0x01);
tmp = this->readRegister(0x92);
*count = tmp & 0x7f;
*typeIsAperture = (tmp >> 7) & 0x01;
this->writeRegister(0x81, 0x00);
this->writeRegister(0xFF, 0x06);
this->writeRegister(0x83, this->readRegister(0x83) & ~0x04);
this->writeRegister(0xFF, 0x01);
this->writeRegister(0x00, 0x01);
this->writeRegister(0xFF, 0x00);
this->writeRegister(0x80, 0x00);
return true;
}
void VL53L0X::getSequenceStepEnables(VL53L0XSequenceStepEnables* enables) {
uint8_t sequenceConfig = this->readRegister(SYSTEM_SEQUENCE_CONFIG);
enables->tcc = (sequenceConfig >> 4) & 0x1;
enables->dss = (sequenceConfig >> 3) & 0x1;
enables->msrc = (sequenceConfig >> 2) & 0x1;
enables->preRange = (sequenceConfig >> 6) & 0x1;
enables->finalRange = (sequenceConfig >> 7) & 0x1;
}
void VL53L0X::getSequenceStepTimeouts(const VL53L0XSequenceStepEnables * enables, VL53L0XSequenceStepTimeouts * timeouts) {
timeouts->preRangeVCSELPeriodPCLKs = this->getVcselPulsePeriod(VcselPeriodPreRange);
timeouts->msrcDssTccMCLKs = this->readRegister(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
timeouts->msrcDssTccMicroseconds = this->timeoutMclksToMicroseconds(timeouts->msrcDssTccMCLKs, timeouts->preRangeVCSELPeriodPCLKs);
timeouts->preRangeMCLKs = this->decodeTimeout(this->readRegister16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
timeouts->preRangeMicroseconds = this->timeoutMclksToMicroseconds(timeouts->preRangeMCLKs, timeouts->preRangeVCSELPeriodPCLKs);
timeouts->finalRangeVCSELPeriodPCLKs = this->getVcselPulsePeriod(VcselPeriodFinalRange);
timeouts->finalRangeMCLKs = this->decodeTimeout(this->readRegister16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
if (enables->preRange) {
timeouts->finalRangeMCLKs -= timeouts->preRangeMCLKs;
}
timeouts->finalRangeMicroseconds = this->timeoutMclksToMicroseconds(timeouts->finalRangeMCLKs, timeouts->finalRangeVCSELPeriodPCLKs);
}
uint16_t VL53L0X::decodeTimeout(uint16_t registerValue) {
// format: "(LSByte * 2^MSByte) + 1"
return (uint16_t)((registerValue & 0x00FF) << (uint16_t)((registerValue & 0xFF00) >> 8)) + 1;
}
uint16_t VL53L0X::encodeTimeout(uint16_t timeoutMCLKs) {
// format: "(LSByte * 2^MSByte) + 1"
if (timeoutMCLKs == 0) {
return 0;
}
uint32_t lsByte = 0;
uint16_t msByte = 0;
lsByte = timeoutMCLKs - 1;
while ((lsByte & 0xFFFFFF00) > 0) {
lsByte >>= 1;
msByte++;
}
return (msByte << 8) | (lsByte & 0xFF);
}
uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeoutPeriodMCLKs, uint8_t vcselPeriodPCLKs) {
uint32_t macroPeriodNanoseconds = calcMacroPeriod(vcselPeriodPCLKs);
return ((timeoutPeriodMCLKs * macroPeriodNanoseconds) + (macroPeriodNanoseconds / 2)) / 1000;
}
uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeoutPeriodMicroseconds, uint8_t vcselPeriodPCLKs) {
uint32_t macroPeriodNanoseconds = calcMacroPeriod(vcselPeriodPCLKs);
return (((timeoutPeriodMicroseconds * 1000) + (macroPeriodNanoseconds / 2)) / macroPeriodNanoseconds);
}
bool VL53L0X::performSingleRefCalibration(uint8_t vhvInitByte) {
// VL53L0X_REG_SYSRANGE_MODE_START_STOP
this->writeRegister(SYSRANGE_START, 0x01 | vhvInitByte);
startTimeout();
while ((this->readRegister(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
if (checkTimeoutExpired()) {
return false;
}
usleep(1);
}
this->writeRegister(SYSTEM_INTERRUPT_CLEAR, 0x01);
this->writeRegister(SYSRANGE_START, 0x00);
return true;
}
/*** I2C wrapper methods ***/
void VL53L0X::writeRegister(uint8_t reg, uint8_t value) {
bool p = I2Cdev::writeByte(this->address, reg, value);
if (!p) {
throw(std::runtime_error(std::string("Error writing byte to register: ") + strerror(errno)));
}
}
void VL53L0X::writeRegister16Bit(uint8_t reg, uint16_t value) {
// No need to reverse endinaness as writeWord does that for us
bool p = I2Cdev::writeWord(this->address, reg, value);
if (!p) {
throw(std::runtime_error(std::string("Error writing word to register: ") + strerror(errno)));
}
}
void VL53L0X::writeRegister32Bit(uint8_t reg, uint32_t value) {
// Split 32-bit word into MS ... LS bytes
uint8_t data[4];
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
data[2] = (value >> 16) & 0xFF;
data[3] = (value >> 24) & 0xFF;
bool p = I2Cdev::writeBytes(this->address, reg, 4, data);
if (!p) {
throw(std::runtime_error("Error writing dword to register"));
}
}
void VL53L0X::writeRegisterMultiple(uint8_t reg, const uint8_t* source, uint8_t count) {
uint8_t data[4];
for (uint8_t i = 0; i < 4; ++i) {
data[i] = source[i];
}
bool p = I2Cdev::writeBytes(this->address, reg, count, data);
if (!p) {
throw(std::runtime_error("Error writing block to register"));
}
}
uint8_t VL53L0X::readRegister(uint8_t reg) {
uint8_t data;
int8_t p = I2Cdev::readByte(this->address, reg, &data);
if (p == -1) {
throw(std::runtime_error("Error reading byte from register"));
}
return data;
}
uint16_t VL53L0X::readRegister16Bit(uint8_t reg) {
uint8_t data[2];
// TODO: change to readWord if implemented; remove reversing endianness afterwards
int8_t p = I2Cdev::readBytes(this->address, reg, 2, data);
if (p == -1) {
throw(std::runtime_error("Error reading word from register"));
}
// Reverse endianness - readBytes doesn't do it for us
return ((int16_t)(data[0]) << 8) + (int16_t)(data[1]);
}
uint32_t VL53L0X::readRegister32Bit(uint8_t reg) {
uint8_t data[4];
// TODO: change to readWords if implemented; remove reversing endianness afterwards
int8_t p = I2Cdev::readBytes(this->address, reg, 4, data);
if (p == -1) {
throw(std::runtime_error("Error reading dword from register"));
}
uint32_t value = 0;
value += (uint32_t)data[0] << 24;
value += (uint32_t)data[1] << 16;
value += (uint32_t)data[2] << 8;
value += (uint32_t)data[3];
return value;
}
void VL53L0X::readRegisterMultiple(uint8_t reg, uint8_t* destination, uint8_t count) {
uint8_t data[count];
int8_t p = I2Cdev::readBytes(this->address, reg, count, data);
if (p == -1) {
throw(std::runtime_error("Error reading block from register"));
}
for (uint8_t i = 0; i < count; ++i) {
destination[i] = data[i];
}
}