-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGP_MPC_evalNGPs.py
461 lines (367 loc) · 18.6 KB
/
GP_MPC_evalNGPs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import time
import yaml
import gym
from argparse import Namespace
from regulators.pure_pursuit import *
from regulators.path_follow_mpc import *
from models.GP_model_ensembling_NGPs import GPEnsembleModelsNGPs
from helpers.closest_point import *
import torch
import gpytorch
import numpy as np
from pyglet.gl import GL_POINTS
import json
import time
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
#
# SAVE_MODELS = False
# PRETRAINED = False
# PRETRAINED_NAMES = {'model1': ['gp107-10-2022_18:02:54', 'gp1_likelihood07-10-2022_18:02:54'],
# 'model2': ['gp207-10-2022_18:02:54', 'gp2_likelihood07-10-2022_18:02:54']}
@dataclass
class MPCConfigGP:
NXK: int = 7 # length of kinematic state vector: z = [x, y, vx, yaw angle, vy, yaw rate, steering angle]
NU: int = 2 # length of input vector: u = = [acceleration, steering speed]
TK: int = 10 # finite time horizon length kinematic
Rk: list = field(
default_factory=lambda: np.diag([0.0000002, 3.0])
) # input cost matrix, penalty for inputs - [accel, steering_speed]
Rdk: list = field(
default_factory=lambda: np.diag([0.0000003, 3.0])
) # input difference cost matrix, penalty for change of inputs - [accel, steering_speed]
Qk: list = field(
default_factory=lambda: np.diag([13.5, 13.5, 5.0, 0.0, 0.0, 0.0, 0.0])
# [13.5, 13.5, 5.5, 13.0, 0.0, 0.0, 0.0]
) # state error cost matrix, for the next (T) prediction time steps
Qfk: list = field(
default_factory=lambda: np.diag([13.5, 13.5, 5.0, 0.0, 0.0, 0.0, 0.0])
# [13.5, 13.5, 5.5, 13.0, 0.0, 0.0, 0.0]
) # final state error matrix, penalty for the final state constraints
N_IND_SEARCH: int = 20 # Search index number
DTK: float = 0.1 # time step [s] kinematic
dlk: float = 3.0 # dist step [m] kinematic
LENGTH: float = 4.298 # Length of the vehicle [m]
WIDTH: float = 1.674 # Width of the vehicle [m]
LR: float = 1.50876
LF: float = 0.88392
WB: float = 0.88392 + 1.50876 # Wheelbase [m]
MIN_STEER: float = -0.4189 # maximum steering angle [rad]
MAX_STEER: float = 0.4189 # maximum steering angle [rad]
MAX_STEER_V: float = 3.2 # maximum steering speed [rad/s]
MAX_SPEED: float = 45.0 # maximum speed [m/s]
MIN_SPEED: float = 0.0 # minimum backward speed [m/s]
MAX_ACCEL: float = 11.5 # maximum acceleration [m/ss]
MAX_DECEL: float = -45.0 # maximum acceleration [m/ss]
MASS: float = 1225.887 # Vehicle mass
def draw_point(e, point, colour):
scaled_point = 50. * point
ret = e.batch.add(1, GL_POINTS, None, ('v3f/stream', [scaled_point[0], scaled_point[1], 0]), ('c3B/stream', colour))
return ret
class DrawDebug:
def __init__(self):
self.reference_traj_show = np.array([[0, 0]])
self.predicted_traj_show = np.array([[0, 0]])
self.dyn_obj_drawn = []
self.f = 0
def draw_debug(self, e):
# delete dynamic objects
while len(self.dyn_obj_drawn) > 0:
if self.dyn_obj_drawn[0] is not None:
self.dyn_obj_drawn[0].delete()
self.dyn_obj_drawn.pop(0)
# spawn new objects
for p in self.reference_traj_show:
self.dyn_obj_drawn.append(draw_point(e, p, [255, 0, 0]))
for p in self.predicted_traj_show:
self.dyn_obj_drawn.append(draw_point(e, p, [0, 255, 0]))
def main(): # after launching this you can run visualization.py to see the results
"""
main entry point
"""
# Choose program parameters
map_name = 'DualLaneChange' # SaoPaulo, rounded_rectangle, l_shape, DualLaneChange
use_dyn_friction = False
control_step = 100.0 # ms
render_every = 1 # render graphics every n control steps
constant_friction = 0.5
constant_speed = True
# datasets = ['dataset_lShape_0_5_100ms_v2', 'dataset_lShape_1_1_100ms_v2']
datasets = ['dataset_DualLaneChange_0_5_100ms_v3',
# 'dataset_DualLaneChange_0_6_100ms_v2',
# 'dataset_DualLaneChange_0_6_100ms_v2',
# 'dataset_DualLaneChange_0_9_100ms_v2',
'dataset_DualLaneChange_1_1_100ms_v2'
]
LOAD_PRETRAINED = False
PRETRAINED_MODELS = {'model': ['gp107-10-2022_18:02:54', 'gp1_likelihood07-10-2022_18:02:54']}
N_HIST = 10
EPS = 0.00001
NUM_MODELS = len(datasets)
# Load map config file
with open('configs/config_%s.yaml' % map_name) as file:
conf_dict = yaml.load(file, Loader=yaml.FullLoader)
conf = Namespace(**conf_dict)
if use_dyn_friction:
# tpamap_name = './maps/DualLaneChange/friction_data/DualLaneChange_track_tpamap.csv'
tpamap_name = './maps/DualLaneChange/friction_data/DualLaneChange5z_track_tpamap.csv'
# tpamap_name = './maps/DualLaneChange/friction_data/DualLaneChange3zv2_track_tpamap.csv'
# tpamap_name = './maps/l_shape/friction_data/l_shape_l720_track_tpamap.csv'
# tpamap_name = './maps/SaoPaulo/friction_data/SaoPaulo_track_tpamap.csv'
# tpamap_name = './maps/l_shape/friction_data/l_shape_friction_gen_input_tpamap.csv'
# tpadata_name = './maps/DualLaneChange/friction_data/DualLaneChange_track_tpadata.json'
tpadata_name = './maps/DualLaneChange/friction_data/DualLaneChange5z_track_tpadata.json'
# tpadata_name = './maps/DualLaneChange/friction_data/DualLaneChange3zv2_track_tpadata.json'
# tpadata_name = './maps/l_shape/friction_data/l_shape_l720_track_tpadata.json'
# tpadata_name = './maps/SaoPaulo/friction_data/SaoPaulo_track_tpadata.json'
# tpadata_name = './maps/l_shape/friction_data/l_shape_friction_gen_input_tpadata.json'
tpamap = np.loadtxt(tpamap_name, delimiter=';', skiprows=1)
tpadata = {}
with open(tpadata_name) as f:
tpadata = json.load(f)
raceline = np.loadtxt(conf.wpt_path, delimiter=";", skiprows=3)
waypoints = np.array(raceline)
waypoints[:, 3] += 1.5707963268
if constant_speed:
waypoints[:, 5] = np.ones((waypoints[:, 5].shape[0],)) * 15.5
else:
waypoints[:, 5] *= 0.985
waypoints[waypoints[:, 5] > 19.5, 5] = 19.5
# init controllers
planner_pp = PurePursuitPlanner(conf, 0.805975 + 1.50876) # 0.805975 + 1.50876
planner_pp.waypoints = waypoints
planner_gp_mpc = STMPCPlanner(model=GPEnsembleModelsNGPs(config=MPCConfigGP(), n_models=NUM_MODELS), waypoints=waypoints,
config=MPCConfigGP())
# init graphics
draw = DrawDebug()
time_start = time.time()
time_end = time.time()
algorithm_runtime_measurements = []
mpc_solve_time_measurements = []
def render_callback(env_renderer):
# custom extra drawing function
e = env_renderer
# update camera to follow car
x = e.cars[0].vertices[::2]
y = e.cars[0].vertices[1::2]
top, bottom, left, right = max(y), min(y), min(x), max(x)
e.score_label.x = left
e.score_label.y = top - 700
e.left = left - 1200
e.right = right + 1200
e.top = top + 1200
e.bottom = bottom - 1200
planner_pp.render_waypoints(e)
draw.draw_debug(e)
# MB - reference point: center of mass
# dynamic_ST - reference point: center of mass
env = gym.make('f110_gym:f110-v0', map=conf.map_path, map_ext=conf.map_ext,
num_agents=1, timestep=0.001, model='MB', drive_control_mode='acc',
steering_control_mode='vel')
env.add_render_callback(render_callback)
# init vector = [x,y,yaw,steering angle, velocity, yaw_rate, beta]
spawn_point = 0
obs, step_reward, done, info = env.reset(
np.array([[waypoints[spawn_point, 1], waypoints[spawn_point, 2], waypoints[spawn_point, 3], 0.0, waypoints[spawn_point, 5], 0.0, 0.0]]))
env.render()
laptime = 0.0
start = time.time()
last_render = 0
# init logger
log = {'time': [], 'x': [], 'y': [], 'x_gt': [], 'y_gt': [], 'lap_n': [], 'vx': [], 'v_ref': [], 'vx_mean': [], 'vx_var': [], 'vy_mean': [],
'vy_var': [], 'theta_mean': [], 'theta_var': [], 'true_vx': [], 'true_mu': [], 'true_vy': [], 'true_yaw_rate': [], 'tracking_error': [], 'w': []}
log_dataset = {'X0': [], 'X1': [], 'X2': [], 'X3': [], 'X4': [], 'X5': [], 'Y0': [], 'Y1': [], 'Y2': []}
# calc number of sim steps per one control step
num_of_sim_steps = int(control_step / (env.timestep * 1000.0))
for i in range(NUM_MODELS):
if LOAD_PRETRAINED:
# Load model
state_dict_gp1 = torch.load('trained_models/' + PRETRAINED_MODELS[i][0] + '.pth').copy()
planner_gp_mpc.model.gp_models[i].gp_model.load_state_dict(state_dict_gp1)
state_dict_likelihood1 = torch.load('trained_models/' + PRETRAINED_MODELS[i][1] + '.pth').copy()
planner_gp_mpc.model.gp_models[i].gp_likelihood.load_state_dict(state_dict_likelihood1)
else:
with open(datasets[i], 'r') as f:
data = json.load(f)
planner_gp_mpc.model.gp_models[i].x_measurements[0] = data['X0']
planner_gp_mpc.model.gp_models[i].x_measurements[1] = data['X1']
planner_gp_mpc.model.gp_models[i].x_measurements[2] = data['X2']
planner_gp_mpc.model.gp_models[i].x_measurements[3] = data['X3']
planner_gp_mpc.model.gp_models[i].x_measurements[4] = data['X4']
planner_gp_mpc.model.gp_models[i].x_measurements[5] = data['X5']
planner_gp_mpc.model.gp_models[i].y_measurements[0] = data['Y0']
planner_gp_mpc.model.gp_models[i].y_measurements[1] = data['Y1']
planner_gp_mpc.model.gp_models[i].y_measurements[2] = data['Y2']
print(len(planner_gp_mpc.model.gp_models[i].x_measurements[0]))
scaled_x, scaled_y = planner_gp_mpc.model.gp_models[i].init_gp()
print(f'train model {i}')
print("GP training...")
planner_gp_mpc.model.gp_models[i].train_gp(scaled_x, scaled_y, method=0)
print("GP training done")
# done training
gp_models_trained = 1
print('Model used: GP')
print('Reference speed: %f' % waypoints[:, 5][0])
gather_data = 0
prev_means = np.zeros((N_HIST, 3, NUM_MODELS))
prev_observations = np.zeros((N_HIST, 3))
prev_w = np.ones((NUM_MODELS, 1)) / NUM_MODELS
x_data_lf, y_data_lf = [], []
x_data_rf, y_data_rf = [], []
x_data_lr, y_data_lr = [], []
x_data_rr, y_data_rr = [], []
x_data_lf_2, y_data_lf_2 = [], []
x_data_rf_2, y_data_rf_2 = [], []
plt.ion()
figure = plt.figure()
line, = plt.plot(0.0, 0.0, 'b.', label='RF')
line2, = plt.plot(0.0, 0.0, 'g.', label='LF')
plt.xlabel('slip angle [rad]')
plt.ylabel('$F_y$ [N]')
plt.legend()
plot_every = 20
i_plot = 0
while not done:
# Regulator step MPC
vehicle_state = np.array([env.sim.agents[0].state[0],
env.sim.agents[0].state[1],
env.sim.agents[0].state[3], # vx
env.sim.agents[0].state[4], # yaw angle
env.sim.agents[0].state[10], # vy
env.sim.agents[0].state[5], # yaw rate
env.sim.agents[0].state[2], # steering angle
]) + np.random.randn(7) * 0.0001
mean, lower, upper = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
u = [0.0, 0.0]
tracking_error = 0.0
total_var = 0.0
n_point = 0
# if not gp_models_trained:
if gp_models_trained:
start = time.time()
u, mpc_ref_path_x, mpc_ref_path_y, mpc_pred_x, mpc_pred_y, mpc_ox, mpc_oy = planner_gp_mpc.plan(vehicle_state)
end = time.time()
print(end-start)
u[0] = u[0] / planner_gp_mpc.config.MASS # Force to acceleration
# draw predicted states and reference trajectory
draw.reference_traj_show = np.array([mpc_ref_path_x, mpc_ref_path_y]).T
draw.predicted_traj_show = np.array([mpc_pred_x, mpc_pred_y]).T
_, tracking_error, _, _, n_point = nearest_point_on_trajectory(np.array([env.sim.agents[0].state[0], env.sim.agents[0].state[1]]),
np.array([waypoints[:, 1], waypoints[:, 2]]).T)
if gp_models_trained:
with torch.no_grad(), gpytorch.settings.fast_pred_var():
# scaled_means = np.zeros((self.n_models, 3, 1))
mean, lower, upper, prev_mean = planner_gp_mpc.model.scale_and_predict_model_step(vehicle_state, [u[0] * planner_gp_mpc.config.MASS, u[1]])
# print('ax = %f delta-v = %f' % (u[0], u[1]))
# set correct friction to the environment
if use_dyn_friction:
min_id = get_closest_point_vectorized(np.array([obs['poses_x'][0], obs['poses_y'][0]]), np.array(tpamap))
# env.params['tire_p_dy1'] = tpadata[str(min_id)][0] - 0.1 # mu_y
env.params['tire_p_dy1'] = tpadata[str(min_id)][0] * 0.9 # mu_y
env.params['tire_p_dx1'] = tpadata[str(min_id)][0] # mu_x
else:
env.params['tire_p_dy1'] = constant_friction * 0.9 # mu_y
# env.params['tire_p_dy1'] = constant_friction - 0.1 # mu_y
env.params['tire_p_dx1'] = constant_friction # mu_x
# print(env.params['tire_p_dx1'])
time_end = time.time()
# print(f'Program time = {time_end - time_start}')
algorithm_runtime_measurements.append(time_end - time_start)
mpc_solve_time_measurements.append(planner_gp_mpc.solve_time)
y_data_lf.append(env.sim.agents[0].tire_forces[4])
x_data_lf.append(env.sim.agents[0].lateral_slip[0])
y_data_rf.append(env.sim.agents[0].tire_forces[5])
x_data_rf.append(env.sim.agents[0].lateral_slip[1])
y_data_lr.append(env.sim.agents[0].tire_forces[6])
x_data_lr.append(env.sim.agents[0].lateral_slip[2])
y_data_rr.append(env.sim.agents[0].tire_forces[7])
x_data_rr.append(env.sim.agents[0].lateral_slip[3])
x_data_lf_2.append(laptime)
y_data_lf_2.append(env.sim.agents[0].vertical_tire_forces[0])
x_data_rf_2.append(laptime)
y_data_rf_2.append(env.sim.agents[0].vertical_tire_forces[1])
if i_plot >= plot_every:
def update(frame):
line.set_data(x_data_lf, y_data_lf)
line2.set_data(x_data_rf, y_data_rf)
figure.gca().relim()
figure.gca().autoscale_view()
return line,
animation = FuncAnimation(figure, update, interval=200)
plt.show()
plt.pause(0.0001)
i_plot = 0
i_plot += 1
# Simulation step
step_reward = 0.0
for i in range(num_of_sim_steps):
obs, rew, _, info = env.step(np.array([[u[1], u[0]]]))
step_reward += rew
laptime += step_reward
time_start = time.time()
vx_transition = env.sim.agents[0].state[3] + np.random.randn(1)[0] * 0.0001 - vehicle_state[2]
vy_transition = env.sim.agents[0].state[10] + np.random.randn(1)[0] * 0.0001 - vehicle_state[4]
yaw_rate_transition = env.sim.agents[0].state[5] + np.random.randn(1)[0] * 0.0001 - vehicle_state[5]
Y_real = np.array([float(vx_transition), float(vy_transition), float(yaw_rate_transition)])
# Roll previous means and observations
prev_means = np.roll(prev_means, shift=1, axis=0)
prev_observations = np.roll(prev_observations, shift=1, axis=0)
# replace with new means
for i in range(NUM_MODELS):
prev_means[-1, :, i] = prev_mean[i].flatten()
# prev_means[-1, :, 1] = prev_mean2.flatten()
# replace with new observations
prev_observations[-1, :] = Y_real.flatten()
planner_gp_mpc.model.compute_w(prev_observations.reshape(-1, 1), prev_means.reshape(-1, NUM_MODELS),
prev_w, EPS,
np.array([u[0] * planner_gp_mpc.config.MASS, u[1]]))
prev_w = planner_gp_mpc.model.w_var.value
s_temp = 'tire_p_dx1'
print(f'W: {planner_gp_mpc.model.w} Ref speed: {waypoints[:, 5][n_point]} Speed: {env.sim.agents[0].state[3]} Friction: {env.params[s_temp]}')
# Logging
log['time'].append(laptime)
log['lap_n'].append(obs['lap_counts'][0])
log['x'].append(env.sim.agents[0].state[0])
log['x_gt'].append(mpc_ref_path_x[0])
log['y'].append(env.sim.agents[0].state[1])
log['y_gt'].append(mpc_ref_path_y[0])
log['true_mu'].append(env.params['tire_p_dx1'])
log['vx'].append(env.sim.agents[0].state[3])
log['v_ref'].append(waypoints[:, 5][n_point])
log['vx_mean'].append(float(mean[0]))
log['vx_var'].append(float(abs(mean[0] - lower[0])))
log['vy_mean'].append(float(mean[1]))
log['vy_var'].append(float(abs(mean[1] - lower[1])))
log['theta_mean'].append(float(mean[2]))
log['theta_var'].append(float(abs(mean[2] - lower[2])))
log['true_vx'].append(env.sim.agents[0].state[3] - vehicle_state[2])
log['true_vy'].append(env.sim.agents[0].state[10] - vehicle_state[4])
log['true_yaw_rate'].append(env.sim.agents[0].state[5] - vehicle_state[5])
log['tracking_error'].append(tracking_error)
log['w'].append(planner_gp_mpc.model.w.tolist())
# Rendering
last_render += 1
if last_render >= render_every:
last_render = 0
env.render(mode='human_fast')
if obs['lap_counts'][0] == gp_models_trained:
gp_models_trained += 1
with open('log01_eval', 'w') as f:
json.dump(log, f)
print('Log saved...')
if obs['lap_counts'][0] == 30: #or tracking_error > 10.0 or env.sim.agents[0].state[0] > 505:
done = 1
print('Sim elapsed time:', laptime, 'Real elapsed time:', time.time() - start)
# Remove first measurement
algorithm_runtime_measurements.pop(0)
mpc_solve_time_measurements.pop(0)
print(f'Number of samples (algorithm): {len(algorithm_runtime_measurements)} '
f' Average algorithm run time {sum(algorithm_runtime_measurements)/len(algorithm_runtime_measurements)}')
print(f'Number of samples (mpc solve): {len(mpc_solve_time_measurements)}'
f' Average mpc solve time {sum(mpc_solve_time_measurements)/len(mpc_solve_time_measurements)}')
with open('log01_eval', 'w') as f:
json.dump(log, f)
if __name__ == '__main__':
main()
# formula zero paper
# exp2