This repository has been archived by the owner on Oct 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 239
/
Copy pathcartoonize.py
365 lines (292 loc) · 15.8 KB
/
cartoonize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import PIL
import sys
import glob
import imageio
import logging
import argparse
import numpy as np
from tqdm import tqdm
from datetime import datetime
from style_transfer.cartoongan import cartoongan
STYLES = ["shinkai", "hayao", "hosoda", "paprika"]
VALID_EXTENSIONS = ['jpg', 'png', 'gif', 'JPG']
parser = argparse.ArgumentParser(description="transform real world images to specified cartoon style(s)")
parser.add_argument("--styles", nargs="+", default=[STYLES[0]],
help="specify (multiple) cartoon styles which will be used to transform input images.")
parser.add_argument("--all_styles", action="store_true",
help="set true if all styled results are desired")
parser.add_argument("--input_dir", type=str, default="input_images",
help="directory with images to be transformed")
parser.add_argument("--output_dir", type=str, default="output_images",
help="directory where transformed images are saved")
parser.add_argument("--batch_size", type=int, default=1,
help="number of images that will be transformed in parallel to speed up processing. "
"higher value like 4 is recommended if there are gpus.")
parser.add_argument("--ignore_gif", action="store_true",
help="transforming gif images can take long time. enable this when you want to ignore gifs")
parser.add_argument("--overwrite", action="store_true",
help="enable this if you want to regenerate outputs regardless of existing results")
parser.add_argument("--skip_comparison", action="store_true",
help="enable this if you only want individual style result and to save processing time")
parser.add_argument("--comparison_view", type=str, default="smart",
choices=["smart", "horizontal", "vertical", "grid"],
help="specify how input images and transformed images are concatenated for easier comparison")
parser.add_argument("--gif_frame_frequency", type=int, default=1,
help="how often should a frame in gif be transformed. freq=1 means that every frame "
"in the gif will be transformed by default. set higher frequency can save processing "
"time while make the transformed gif less smooth")
parser.add_argument("--max_num_frames", type=int, default=100,
help="max number of frames that will be extracted from a gif. set higher value if longer gif "
"is needed")
parser.add_argument("--keep_original_size", action="store_true",
help="by default the input images will be resized to reasonable size to prevent potential large "
"computation and to save file sizes. Enable this if you want the original image size.")
parser.add_argument("--max_resized_height", type=int, default=300,
help="specify the max height of a image after resizing. the resized image will have the same"
"aspect ratio. Set higher value or enable `keep_original_size` if you want larger image.")
parser.add_argument("--convert_gif_to_mp4", action="store_true",
help="convert transformed gif to mp4 which is much more smaller and easier to share. "
"`ffmpeg` need to be installed at first.")
parser.add_argument("--logging_lvl", type=str, default="info",
choices=["debug", "info", "warning", "error", "critical"],
help="logging level which decide how verbosely the program will be. set to `debug` if necessary")
parser.add_argument("--debug", action="store_true",
help="show the most detailed logging messages for debugging purpose")
parser.add_argument("--show_tf_cpp_log", action="store_true")
args = parser.parse_args()
TEMPORARY_DIR = os.path.join(f"{args.output_dir}", ".tmp")
logger = logging.getLogger("Cartoonizer")
logger.propagate = False
log_lvl = {"debug": logging.DEBUG, "info": logging.INFO,
"warning": logging.WARNING, "error": logging.ERROR,
"critical": logging.CRITICAL}
if args.debug:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(log_lvl[args.logging_lvl])
formatter = logging.Formatter(
"[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s", "%Y-%m-%d %H:%M:%S")
stdhandler = logging.StreamHandler(sys.stdout)
stdhandler.setFormatter(formatter)
logger.addHandler(stdhandler)
if not args.show_tf_cpp_log:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
def pre_processing(image_path, style, expand_dim=True):
input_image = PIL.Image.open(image_path).convert("RGB")
if not args.keep_original_size:
width, height = input_image.size
aspect_ratio = width / height
resized_height = min(height, args.max_resized_height)
resized_width = int(resized_height * aspect_ratio)
if width != resized_width:
logger.debug(f"resized ({width}, {height}) to: ({resized_width}, {resized_height})")
input_image = input_image.resize((resized_width, resized_height))
input_image = np.asarray(input_image)
input_image = input_image.astype(np.float32)
input_image = input_image[:, :, [2, 1, 0]]
if expand_dim:
input_image = np.expand_dims(input_image, axis=0)
return input_image
def post_processing(transformed_image, style):
if not type(transformed_image) == np.ndarray:
transformed_image = transformed_image.numpy()
transformed_image = transformed_image[0]
transformed_image = transformed_image[:, :, [2, 1, 0]]
transformed_image = transformed_image * 0.5 + 0.5
transformed_image = transformed_image * 255
return transformed_image
def save_transformed_image(output_image, img_filename, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
transformed_image_path = os.path.join(save_dir, img_filename)
if output_image is not None:
image = PIL.Image.fromarray(output_image.astype("uint8"))
image.save(transformed_image_path)
return transformed_image_path
def save_concatenated_image(image_paths, image_folder="comparison", num_columns=2):
images = [PIL.Image.open(i).convert('RGB') for i in image_paths]
# pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here)
min_shape = sorted([(np.sum(i.size), i.size) for i in images])[0][1]
array = np.asarray([np.asarray(i.resize(min_shape)) for i in images])
view = args.comparison_view
if view == "smart":
width, height = min_shape[0], min_shape[1]
aspect_ratio = width / height
logger.debug(f"(width, height): ({width}, {height}), aspect_ratio: {aspect_ratio}")
grid_suitable = (len(args.styles) + 1) % num_columns == 0
is_portrait = aspect_ratio <= 0.75
if grid_suitable and not is_portrait:
view = "grid"
elif is_portrait:
view = "horizontal"
else:
view = "vertical"
if view == "horizontal":
images_comb = np.hstack(array)
elif view == "vertical":
images_comb = np.vstack(array)
elif view == "grid":
rows = np.split(array, num_columns)
rows = [np.hstack(row) for row in rows]
images_comb = np.vstack([row for row in rows])
else:
logger.debug(f"Wrong `comparison_view`: {args.comparison_view}")
images_comb = PIL.Image.fromarray(images_comb)
file_name = image_paths[0].split(os.path.sep)[-1]
if args.output_dir not in image_folder:
image_folder = os.path.join(args.output_dir, image_folder)
if not os.path.exists(image_folder):
os.makedirs(image_folder)
image_path = os.path.join(image_folder, file_name)
images_comb.save(image_path)
return image_path
def convert_gif_to_png(gif_path):
logger.debug(f"`{gif_path}` is a gif, extracting png images from it...")
gif_filename = gif_path.split(os.path.sep)[-1].replace(".gif", "")
image = PIL.Image.open(gif_path)
palette = image.getpalette()
png_paths = list()
i = 0
png_dir = os.path.join(TEMPORARY_DIR, gif_filename)
if not os.path.exists(png_dir):
logger.debug(f"Creating temporary folder: {png_dir} for storing intermediate result...")
os.makedirs(png_dir)
prev_generated_png_paths = glob.glob(png_dir + '/*.png')
if prev_generated_png_paths:
return prev_generated_png_paths
num_processed_frames = 0
logger.debug("Generating png images...")
try:
while num_processed_frames < args.max_num_frames:
image.putpalette(palette)
extracted_image = PIL.Image.new("RGB", image.size)
extracted_image.paste(image)
if not args.keep_original_size:
width, height = extracted_image.size
aspect_ratio = width / height
resized_height = min(height, args.max_resized_height)
resized_width = int(resized_height * aspect_ratio)
if width != resized_width:
logger.debug(f"resized ({width}, {height}) to: ({resized_width}, {resized_height})")
extracted_image = extracted_image.resize((resized_width, resized_height))
if i % args.gif_frame_frequency == 0:
png_filename = f"{i + 1}.png"
png_path = os.path.join(png_dir, png_filename)
extracted_image.save(png_path)
png_paths.append(png_path)
num_processed_frames += 1
image.seek(image.tell() + 1)
i += 1
except EOFError:
pass # end of sequence
logger.debug(f"Number of {len(png_paths)} png images were generated at {png_dir}.")
return png_paths
def transform_png_images(image_paths, model, style, return_existing_result=False):
transformed_image_paths = list()
save_dir = os.path.join("/".join(image_paths[0].split(os.path.sep)[:-1]), style)
logger.debug(f"Transforming {len(image_paths)} images and saving them to {save_dir}....")
if return_existing_result:
return glob.glob(os.path.join(save_dir, "*.png"))
num_batch = int(np.ceil(len(image_paths) / args.batch_size))
image_paths = np.array_split(image_paths, num_batch)
logger.debug(f"Processing {num_batch} batches with batch_size={args.batch_size}...")
for batch_image_paths in image_paths:
image_filenames = [path.split(os.path.sep)[-1] for path in batch_image_paths]
input_images = [pre_processing(path, style=style, expand_dim=False) for path in batch_image_paths]
input_images = np.stack(input_images, axis=0)
transformed_images = model(input_images)
output_images = [post_processing(image, style=style)
for image in np.split(transformed_images, transformed_images.shape[0])]
paths = [save_transformed_image(img, f, save_dir)
for img, f in zip(output_images, image_filenames)]
transformed_image_paths.extend(paths)
return transformed_image_paths
def save_png_images_as_gif(image_paths, image_filename, style="comparison"):
gif_dir = os.path.join(args.output_dir, style)
if not os.path.exists(gif_dir):
os.makedirs(gif_dir)
gif_path = os.path.join(gif_dir, image_filename)
with imageio.get_writer(gif_path, mode='I') as writer:
file_names = sorted(image_paths, key=lambda x: int(x.split('/')[-1].replace('.png', '')))
logger.debug(f"Combining {len(file_names)} png images into {gif_path}...")
for i, filename in enumerate(file_names):
image = imageio.imread(filename)
writer.append_data(image)
return gif_path
def convert_gif_to_mp4(gif_path, crf=25):
mp4_dir = os.path.join(os.path.dirname(gif_path), "mp4")
gif_file = gif_path.split(os.path.sep)[-1]
if not os.path.exists(mp4_dir):
os.makedirs(mp4_dir)
mp4_path = os.path.join(mp4_dir, gif_file.replace(".gif", ".mp4"))
cmd = "ffmpeg -y -i {} -movflags faststart -pix_fmt yuv420p -vf \"scale=trunc(iw/2)*2:trunc(ih/2)*2\" -crf {} {}"
cmd = cmd.replace("My Drive", "My\ Drive") # noqa: W605
os.system(cmd.format(gif_path, crf, mp4_path))
def result_exist(image_path, style):
return os.path.exists(os.path.join(args.output_dir, style, image_path.split(os.path.sep)[-1]))
def main():
start = datetime.now()
logger.info(f"Transformed images will be saved to `{args.output_dir}` folder.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# create temporary folder which will be deleted after transformations
if not os.path.exists(TEMPORARY_DIR):
os.makedirs(TEMPORARY_DIR)
# decide what styles to used in this execution
styles = STYLES if args.all_styles else args.styles
models = list()
for style in styles:
models.append(cartoongan.load_model(style))
logger.info(f"Cartoonizing images using {', '.join(styles)} style...")
image_paths = []
for ext in VALID_EXTENSIONS:
image_paths.extend(glob.glob(os.path.join(args.input_dir, f"*.{ext}")))
logger.info(f"Preparing to transform {len(image_paths)} images from `{args.input_dir}` directory...")
progress_bar = tqdm(image_paths, desc='Transforming')
for image_path in progress_bar:
image_filename = image_path.split(os.path.sep)[-1]
progress_bar.set_postfix(File=image_filename)
if image_filename.endswith(".gif") and not args.ignore_gif:
png_paths = convert_gif_to_png(image_path)
png_paths_list = [png_paths]
num_images = len(png_paths)
for model, style in zip(models, styles):
return_existing_result = result_exist(image_path, style) or args.overwrite
transformed_png_paths = transform_png_images(png_paths, model, style,
return_existing_result=return_existing_result)
png_paths_list.append(transformed_png_paths)
if not return_existing_result:
gif_path = save_png_images_as_gif(transformed_png_paths, image_filename, style)
if args.convert_gif_to_mp4:
convert_gif_to_mp4(gif_path)
rearrange_paths_list = [[li[i] for li in png_paths_list] for i in range(num_images)]
save_dir = os.path.join(TEMPORARY_DIR, image_filename.replace(".gif", ""), "comparison")
combined_image_paths = list()
for image_paths in rearrange_paths_list:
path = save_concatenated_image(image_paths, image_folder=save_dir)
combined_image_paths.append(path)
if not args.skip_comparison:
gif_path = save_png_images_as_gif(combined_image_paths, image_filename)
if args.convert_gif_to_mp4:
convert_gif_to_mp4(gif_path)
else:
related_image_paths = [image_path]
for model, style in zip(models, styles):
input_image = pre_processing(image_path, style=style)
save_dir = os.path.join(args.output_dir, style)
return_existing_result = result_exist(image_path, style) and not args.overwrite
if not return_existing_result:
transformed_image = model.predict(input_image, use_multiprocessing=True)
output_image = post_processing(transformed_image, style=style)
transformed_image_path = save_transformed_image(output_image, image_filename, save_dir)
else:
transformed_image_path = save_transformed_image(None, image_filename, save_dir)
related_image_paths.append(transformed_image_path)
if not args.skip_comparison:
save_concatenated_image(related_image_paths)
progress_bar.close()
time_elapsed = datetime.now() - start
logger.info(f"Total processing time: {time_elapsed}")
if __name__ == "__main__":
main()