-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_for_eval.py
169 lines (140 loc) · 6.34 KB
/
generate_for_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gc
import json
import os
from dataclasses import dataclass, field
from typing import List, Optional
import ray
import torch
import vllm
from datasets import load_dataset
from packaging.version import Version
from peft import PeftModelForCausalLM
from transformers import (
AutoModelForCausalLM,
)
from vllm import LLM, SamplingParams
from src.utils import TRLParser
@dataclass
class GenerateScriptArguments:
save_generations: Optional[bool] = field(
default=False,
metadata={"help": "output folder"},
)
num_gpus: int = int(os.environ.get("NPROC", 1))
base_model_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
base_model_revision: Optional[str] = field(default=None)
model_name_or_path: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
model_paths: Optional[List[str]] = field(default_factory=list)
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_name: Optional[str] = field(default=None, metadata={"help": "the dataset name"})
split: Optional[str] = field(default="validation", metadata={"help": "the dataset name"})
temperature: Optional[float] = field(default=0.7, metadata={"help": "Gen temperature"})
top_p: Optional[float] = field(default=1.0, metadata={"help": "Gen temperature"})
max_new_tokens: Optional[int] = field(default=48, metadata={"help": "max new tokens"})
torch_dtype: Optional[str] = field(default="auto")
sanity_check: Optional[bool] = field(default=False)
wandb_run_id: str = None # unused
dataset_path: str = None
def generate(script_args):
dataset = load_dataset(script_args.dataset_name, split=script_args.split)
prompts = dataset["query"]
sampling_params = SamplingParams(
temperature=script_args.temperature,
max_tokens=script_args.max_new_tokens,
top_p=script_args.top_p,
n=1,
include_stop_str_in_output=True,
skip_special_tokens=False,
)
gens = {}
trainer_states = {}
model_paths = [script_args.model_name_or_path]
# path with possible checkpoint subfolders
if os.path.exists(script_args.model_name_or_path):
checkpoint_subfolders = [
path
for path in os.listdir(script_args.model_name_or_path)
if path.startswith("checkpoint") and (not script_args.model_paths or path in script_args.model_paths)
]
# if there are checkpoint subfolders, use those instead of model_path
if checkpoint_subfolders:
model_paths = [
os.path.join(script_args.model_name_or_path, subfolder) for subfolder in checkpoint_subfolders
]
for model_name_or_path in model_paths:
print(f"generating {model_name_or_path}")
model_or_checkpoint_name = os.path.basename(model_name_or_path)
merged_model_path = None
if script_args.base_model_name is not None:
# peft model that needs to be merged
base_model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name, revision=script_args.base_model_revision
)
# merge the model and save
model = PeftModelForCausalLM.from_pretrained(base_model, model_name_or_path, device_map="cpu")
merged = model.merge_and_unload()
merged_model_path = os.path.join(model_name_or_path, "_merged")
merged.save_pretrained(merged_model_path)
del model
del merged
script_args.tokenizer_name = script_args.base_model_name
if 16 % script_args.num_gpus == 0:
tensor_parallel_size = script_args.num_gpus
else:
tensor_parallel_size = max(divisor for divisor in [1, 2, 4, 8] if divisor < script_args.num_gpus)
llm = LLM(
model=model_name_or_path if merged_model_path is None else merged_model_path,
tokenizer=script_args.tokenizer_name,
dtype=script_args.torch_dtype,
trust_remote_code=True,
tensor_parallel_size=tensor_parallel_size,
)
generations = llm.generate(prompts, sampling_params)
texts = [output.prompt + output.outputs[0].text for output in generations]
gens[model_or_checkpoint_name] = texts
dataset = dataset.add_column(f"generations_{model_or_checkpoint_name}", texts)
# delete old model
destroy_model_parallel()
del llm.llm_engine.model_executor.driver_worker
del llm
gc.collect()
torch.cuda.empty_cache()
ray.shutdown()
trainer_state_path = os.path.join(model_name_or_path, "trainer_state.json")
if os.path.exists(trainer_state_path):
with open(trainer_state_path, "r") as f:
state = json.load(f)
trainer_states[model_or_checkpoint_name] = state
else:
trainer_states[model_or_checkpoint_name] = {}
if script_args.save_generations:
if script_args.dataset_path is not None:
dataset_path = script_args.dataset_path
else:
dataset_path = os.path.join(
script_args.model_name_or_path,
"_generations",
)
os.makedirs(dataset_path, exist_ok=True)
print("saving dataset to")
print(dataset_path)
dataset.save_to_disk(dataset_path)
with open(os.path.join(dataset_path, "sampling_params.txt"), "w") as f:
print(sampling_params, file=f)
with open(os.path.join(dataset_path, "trainer_states.json"), "w") as f:
json.dump(trainer_states, f)
print(f"generated {len(gens)} steps")
if __name__ == "__main__":
parser = TRLParser([GenerateScriptArguments])
args = parser.parse_args_and_config()[0]
if Version(vllm.__version__) > Version("0.4.1"):
if args.num_gpus > 1:
raise NotImplementedError("haven't implemented multigpu with vllm > 0.4.1")
from vllm.distributed.parallel_state import destroy_model_parallel
else:
from vllm.model_executor.parallel_utils.parallel_state import destroy_model_parallel
if args.sanity_check:
checkpoint_subfolders = [path for path in os.listdir(args.model_name_or_path) if path.startswith("checkpoint")]
args.model_paths = checkpoint_subfolders[:2]
print("GENERATING")
generate(args)