-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathonline_dpo.py
163 lines (139 loc) · 5.86 KB
/
online_dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import multiprocessing
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import PartialState
from datasets import load_dataset
from peft import get_peft_model
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
)
from trl import ModelConfig
from trl.trainer.utils import get_peft_config
from src.online_dpo_single_vllm_trainer import OnlineDPOSingleVLLMTrainer
from src.online_dpo_trainer import OnlineDPOTrainer
from src.online_dpo_vllm_trainer import OnlineDPOVLLMConfig, OnlineDPOVLLMTrainer
from src.utils import TRLParser, WandbLogModelConfig
@dataclass
class ScriptArguments:
output_global_parent_dir: str = None
"parent dir that output dir goes under"
dataset_name: str = field(default=None, metadata={"help": "the dataset name"})
dataset_train_split: str = field(default="train", metadata={"help": "the name of the training set of the dataset"})
dataset_test_split: str = field(default="test", metadata={"help": "the name of the training set of the dataset"})
max_length: int = field(default=512, metadata={"help": "The maximum sequence length for SFT Trainer"})
wandb_run_id: Optional[str] = field(default=None)
"""wandb run id or if "slurm" then it saves under global parent dir / slurm job id / config_name"""
single: bool = field(default=False)
def prepare_dataset(dataset, tokenizer):
"""pre-tokenize the dataset before training; only collate during training"""
def tokenize(element):
input_ids = tokenizer(
element["query"],
padding=False,
)["input_ids"]
return {"input_ids": input_ids, "lengths": [len(ids) for ids in input_ids]}
return dataset.map(
tokenize,
batched=True,
remove_columns=dataset.column_names,
num_proc=multiprocessing.cpu_count(),
)
if __name__ == "__main__":
parser = TRLParser((ScriptArguments, OnlineDPOVLLMConfig, ModelConfig))
args, config, model_config = parser.parse_args_and_config()
if args.wandb_run_id == "slurm":
run_id = os.environ["SLURM_JOB_ID"]
config_name = os.path.basename(config.output_dir)
# save to parent / slurm id / output_dir
if args.output_global_parent_dir is not None:
config.output_dir = os.path.join(args.output_global_parent_dir, run_id, config.output_dir)
os.environ["WANDB_RUN_ID"] = run_id + "_" + config_name
elif args.wandb_run_id is not None:
os.environ["WANDB_RUN_ID"] = args.wandb_run_id
################
# Model & Tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=True,
)
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, num_labels=1, torch_dtype=torch_dtype
)
# fp16 is mixed precision and only the inference models (reward and ref) can have fp16 dtype
policy_dtype = torch_dtype if torch_dtype != torch.float16 else torch.float32
policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path, torch_dtype=policy_dtype)
if model_config.use_peft:
peft_config = get_peft_config(model_config)
policy = get_peft_model(policy, peft_config)
ref_policy = None
else:
ref_policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path, torch_dtype=torch_dtype)
################
# Dataset
################
raw_datasets = load_dataset(args.dataset_name)
if config.sanity_check:
for key in raw_datasets:
raw_datasets[key] = raw_datasets[key].select(range(2048))
config.push_to_hub = False
config.report_to = ""
config.save_strategy = "no"
config.save_generations = False
config.num_sample_generations = 0
config.logging_steps = 1
# config.per_device_train_batch_size = 8
# config.gradient_accumulation_steps = 8
# nproc = PartialState().num_processes
# config.total_episodes = 64 * nproc * 5
train_dataset = raw_datasets[args.dataset_train_split]
eval_dataset = raw_datasets[args.dataset_test_split]
train_dataset = prepare_dataset(train_dataset, tokenizer)
eval_dataset = prepare_dataset(eval_dataset, tokenizer)
# filtering
train_dataset = train_dataset.filter(lambda x: x["lengths"] <= args.max_length)
eval_dataset = eval_dataset.filter(lambda x: x["lengths"] <= args.max_length)
assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token"
################
# Training
################
if config.vllm and args.single:
TrainerCls = OnlineDPOSingleVLLMTrainer
elif config.vllm:
TrainerCls = OnlineDPOVLLMTrainer
else:
TrainerCls = OnlineDPOTrainer
trainer = TrainerCls(
config=config,
tokenizer=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
callbacks=[WandbLogModelConfig(model_config)],
)
trainer.train()
if not config.sanity_check:
trainer.save_model(config.output_dir)
if config.push_to_hub:
trainer.push_to_hub()
if PartialState().is_main_process and model_config.use_peft:
model = trainer.policy.merge_and_unload()
model.push_to_hub(config.hub_model_id)
if trainer.accelerator.is_main_process:
try:
os.remove("output_dir")
except OSError:
pass
os.symlink(config.output_dir, "output_dir")