-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrelabel_with_rm.py
145 lines (119 loc) · 4.9 KB
/
relabel_with_rm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from dataclasses import dataclass, field
from typing import Dict, List, Literal, Optional
import torch
from datasets import DatasetDict, load_dataset
from tqdm.auto import tqdm
from transformers import pipeline
from transformers.pipelines.pt_utils import KeyDataset
from trl import ModelConfig
from trl.trainer.utils import get_kbit_device_map, get_quantization_config
from src.utils import TRLParser
@dataclass
class ScriptArguments:
dataset_name: str = None
tokenizer_name: Optional[str] = None
train_split: str = "train"
eval_split: Optional[str] = "validation"
batch_size: int = 32
template: Literal["tldr", "hh"] = field(default="tldr", metadata={"help": "hh or summarization"})
seed: Optional[int] = field(default=0)
sanity_check: Optional[bool] = field(default=False)
output_name: Optional[str] = None
push_to_hub: bool = False
def relabel_dataset_fn(batch: Dict[str, List]):
relabel_batch = {
"prompt": [],
"chosen": [],
"rejected": [],
"chosen_score": [],
"rejected_score": [],
}
for prompt, chosen, rejected, chosen_score, rejected_score in zip(
batch["prompt"],
batch["chosen"],
batch["rejected"],
batch["chosen_score"],
batch["rejected_score"],
):
if chosen_score >= rejected_score:
relabel_batch["prompt"].append(prompt)
relabel_batch["chosen"].append(chosen)
relabel_batch["chosen_score"].append(chosen_score)
relabel_batch["rejected"].append(rejected)
relabel_batch["rejected_score"].append(rejected_score)
else:
relabel_batch["prompt"].append(prompt)
relabel_batch["chosen"].append(rejected)
relabel_batch["chosen_score"].append(rejected_score)
relabel_batch["rejected"].append(chosen)
relabel_batch["rejected_score"].append(chosen_score)
return relabel_batch
def create_prompt_completions(batch: Dict[str, List]):
output = {
"prompt_chosen": [],
"prompt_rejected": [],
}
for prompt, chosen, rejected in zip(
batch["prompt"],
batch["chosen"],
batch["rejected"],
):
output["prompt_chosen"].append(prompt + chosen)
output["prompt_rejected"].append(prompt + rejected)
return output
if __name__ == "__main__":
parser = TRLParser([ScriptArguments, ModelConfig])
args, model_config = parser.parse_args_and_config()
if args.sanity_check:
args.train_split = args.train_split + "[:100]"
args.eval_split = args.eval_split + "[:100]"
args.push_to_hub = False
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else "auto",
quantization_config=quantization_config,
)
tokenizer_name = args.tokenizer_name if args.tokenizer_name is not None else model_config.model_name_or_path
reward_pipeline = pipeline(
task="text-classification",
model=model_config.model_name_or_path,
tokenizer=tokenizer_name,
model_kwargs=model_kwargs,
function_to_apply="none",
)
if not reward_pipeline.tokenizer.pad_token:
reward_pipeline.tokenizer.pad_token_id = reward_pipeline.tokenizer.eos_token_id
reward_pipeline.model.config.pad_token_id = reward_pipeline.tokenizer.pad_token_id
relabel_dataset = DatasetDict()
for split in [args.train_split, args.eval_split]:
if split is None:
continue
dataset = load_dataset(args.dataset_name, split=split)
dataset = dataset.map(create_prompt_completions, batched=True)
scores = {"chosen": [], "rejected": []}
for comp in ["chosen", "rejected"]:
for out in tqdm(
reward_pipeline(KeyDataset(dataset, f"prompt_{comp}"), batch_size=args.batch_size),
desc=comp,
total=len(dataset),
):
if isinstance(out, dict):
out = [out]
scores[comp].extend([o["score"] for o in out])
dataset = dataset.add_column("chosen_score", scores["chosen"])
dataset = dataset.add_column("rejected_score", scores["rejected"])
chosen_wins = sum(chosen > rejected for chosen, rejected in zip(scores["chosen"], scores["rejected"]))
agree_rate = chosen_wins / len(scores["chosen"])
print(f"Agreement rate {agree_rate}")
dataset = dataset.map(relabel_dataset_fn, batched=True)
relabel_dataset[split] = dataset
if args.push_to_hub:
print("Pushing")
relabel_dataset.push_to_hub(args.output_name)