-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_SimCLR_utils.py
323 lines (266 loc) · 12.4 KB
/
train_SimCLR_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
from torch import nn
from torch.utils.data import DataLoader
# Setup device-agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
from dataset.utils.utils import TextColors as tc
from tqdm import tqdm
import matplotlib.pyplot as plt
import os
from torchmetrics import R2Score
import torch.nn.functional as F
# SimCLR loss for contrastive learning -> SimCLR paper: https://arxiv.org/pdf/2002.05709.pdf
class SimCLR(nn.Module):
def __init__(self, temperature):
super().__init__()
assert temperature > 0.0, "The temperature must be a positive float!"
self.temperature = temperature
def forward(self, feats1, feats2):
# Concatenate two batches of features
feats = torch.cat([feats1, feats2], dim=0)
# Calculate cosine similarity
cos_sim = F.cosine_similarity(feats[:, None, :], feats[None, :, :], dim=-1)
# Mask out cosine similarity to itself
self_mask = torch.eye(cos_sim.shape[0], dtype=torch.bool, device=cos_sim.device)
cos_sim.masked_fill_(self_mask, -9e15)
# Find positive example -> batch_size//2 away from the original example
pos_mask = self_mask.roll(shifts=cos_sim.shape[0] // 2, dims=0)
# InfoNCE loss
cos_sim = cos_sim / self.temperature
nll = -cos_sim[pos_mask] + torch.logsumexp(cos_sim, dim=-1)
nll = nll.mean()
# Get ranking position of positive example
comb_sim = torch.cat(
[cos_sim[pos_mask][:, None], cos_sim.masked_fill(pos_mask, -9e15)], # First position positive example
dim=-1,
)
sim_argsort = comb_sim.argsort(dim=-1, descending=True).argmin(dim=-1)
# Ranking metrics
acc_top1 = (sim_argsort == 0).float().mean()
acc_top5 = (sim_argsort < 5).float().mean()
acc_mean_pos = 1 + sim_argsort.float().mean()
return nll, acc_top1, acc_top5, acc_mean_pos
def test_SimCLR():
from torch.distributions import uniform
# Create instance of SimCLR model
model = SimCLR(temperature=0.5)
# Generate dummy features with uniform distribution
dummy_feats1 = uniform.Uniform(0, 1).rsample((64, 128)) # 64 samples, 128 features
dummy_feats2 = uniform.Uniform(0, 1).rsample((64, 128))
# Forward pass
nll, acc_top1, acc_top5, acc_mean_pos = model(dummy_feats1, dummy_feats2)
# Validate outputs
assert isinstance(nll, torch.Tensor)
assert isinstance(acc_top1, torch.Tensor)
assert isinstance(acc_top5, torch.Tensor)
assert isinstance(acc_mean_pos, torch.Tensor)
print("nll: ", nll, "\n", "acc_top1: ", acc_top1, "\n", "acc_top5: ", acc_top5, "\n", "acc_mean_pos: ", acc_mean_pos)
# Print test passed
print("Test passed!")
def train_step(model:nn.Module, data_loader:DataLoader, loss_fn:nn.Module, optimizer:torch.optim.Optimizer):
model.train()
# Setup train loss and train accuracy values
train_loss = 0
train_top1 = 0
train_top5 = 0
train_mean_pos = 0
loop = tqdm(data_loader, leave=True)
for batch, (X, y) in enumerate(loop):
# Send data to target device
if isinstance(X, tuple) or isinstance(X, list): # if its a tuple it has the climate data in it
X = [tensor.to(device) for tensor in list(X)]
y = y.to(device)
elif isinstance(X, torch.Tensor): # if its a tensor then its only the Image data
X, y = X.to(device), y.to(device)
else:
raise ValueError(f"Input of the netowrk must be either a Tensor or a Tuple of Tensors but it is: {type(X)}")
# 1. Forward pass
z_img, z_clim = model(X)
# 2. Calculate and accumulate loss
loss, acc_top1, acc_top5, acc_mean_pos = loss_fn(z_img, z_clim)
train_loss += loss.item()
train_top1 += acc_top1.item()
train_top5 += acc_top5.item()
train_mean_pos += acc_mean_pos.item()
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 10 == 0 or batch == len(data_loader) - 1:
loss= loss.item()
loop.set_postfix(Train_Loss=train_loss / (batch+1))
train_loss = train_loss / len(data_loader)
train_top1 = train_top1 / len(data_loader)
train_top5 = train_top5 / len(data_loader)
train_mean_pos = train_mean_pos / len(data_loader)
return train_loss, train_top1, train_top5, train_mean_pos
# Test step function
def test_step(model:nn.Module, data_loader:DataLoader, loss_fn:nn.Module, verbose = False):
size = len(data_loader.dataset)
model.eval()
test_loss = 0
test_top1 = 0
test_top5 = 0
test_mean_pos = 0
with torch.inference_mode():
for batch, (X, y) in enumerate(data_loader):
# Send data to target device
if isinstance(X, tuple) or isinstance(X, list): # if its a tuple it has the climate data in it
X = [tensor.to(device) for tensor in list(X)]
y = y.to(device)
elif isinstance(X, torch.Tensor): # if its a tensor then its only the Image data
X, y = X.to(device), y.to(device)
else:
raise ValueError(f"Input of the netowrk must be either a Tensor or a Tuple of Tensors but it is: {type(X)}")
z_img, z_clim = model(X)
loss, acc_top1, acc_top5, acc_mean_pos = loss_fn(z_img, z_clim)# y_pred is of shape (batch_size, 1) and y is of shape (batch_size) -> unsqueeze y to (batch_size, 1)
test_loss += loss.item()
test_top1 += acc_top1.item()
test_top5 += acc_top5.item()
test_mean_pos += acc_mean_pos.item()
# if batch % 2 == 0:
# loss, current = loss.item(), batch * len(X)
# print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
test_loss /= len(data_loader)
test_top1 /= len(data_loader)
test_top5 /= len(data_loader)
test_mean_pos /= len(data_loader)
if verbose:
print(f"Test Loss: {test_loss:>8f}%")
print(z_img.shape, z_clim.shape)
return test_loss, test_top1, test_top5, test_mean_pos
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
print("Saving checkpoint=> ", end="")
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, filename)
print("Done!")
def load_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
print("Loading checkpoint=> ", end="")
checkpoint = torch.load(filename)
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print("Done!")
# 1. Take in various parameters required for training and test steps
def train(model: torch.nn.Module,
train_dataloader: torch.utils.data.DataLoader,
test_dataloader: torch.utils.data.DataLoader,
val_dataloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module = SimCLR(temperature=0.5),
epochs: int = 5,
lr_scheduler: bool = None,
save_model_path = None,
save_model_if_mae_lower_than = None,
):
""" Train the model and test it on the test set
Note: If you don't have diffrent validation and test sets, just pass the same dataloader for both test and val
Args:
model (torch.nn.Module): Pytorch model
train_dataloader (torch.utils.data.DataLoader): train dataloader
test_dataloader (torch.utils.data.DataLoader): test dataloader
val_dataloader (torch.utils.data.DataLoader): validation dataloader
optimizer (torch.optim.Optimizer): optimizer
loss_fn (torch.nn.Module, optional): Loss funciton. Defaults to SimCLR(temperature=0.5).
epochs (int, optional): Number of Epochs. Defaults to 5.
lr_scheduler (bool, optional): Use LR scheduler. Defaults to None, Options are "plateau" or "step" . Defaults to None. / plateau or step
save_model_path (str, optional): If given, saves the model with the given name and path. Defaults to None | Example: "my_checkpoint.pth.tar".
Returns:
_type_: _description_
"""
if lr_scheduler == "plateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True)
elif lr_scheduler == "step":
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.2, verbose=True)
else:
pass
# 2. Create empty results dictionary
results = {"train_loss": [],
"train_acc_top1": [],
"train_acc_top5": [],
"train_acc_mean_pos": [],
"val_loss": [],
"val_acc_top1": [],
"val_acc_top5": [],
"val_acc_mean_pos": [],
}
# 3. Loop through training and testing steps for a number of epochs
for epoch in range(1, epochs+1):
print(tc.OKGREEN,f"Epoch {epoch}\n-------------------------------",tc.ENDC)
train_loss,train_acc_top1, train_acc_top5, train_acc_mean_pos = train_step(model=model,
data_loader=train_dataloader,
loss_fn=loss_fn,
optimizer=optimizer)
val_loss,val_acc_top1, val_acc_top5, val_acc_mean_pos = test_step(model=model,
data_loader=val_dataloader,
loss_fn=loss_fn)
# 4. Print out what's happening
print(
tc.OKCYAN,
f"Epoch {epoch} Results: | ",
f"train_loss: {train_loss} | ",
f"val_loss: {val_loss} ",
f"train_acc_top1: {train_acc_top1} | ",
f"val_acc_top1: {val_acc_top1} ",
f"train_acc_top5: {train_acc_top5} | ",
f"val_acc_top5: {val_acc_top5} ",
f"train_acc_mean_pos: {train_acc_mean_pos} | ",
f"val_acc_mean_pos: {val_acc_mean_pos} ",
tc.ENDC
)
print("")
# 5. Update results dictionary
results["train_loss"].append(train_loss)
results["train_acc_top1"].append(train_acc_top1)
results["train_acc_top5"].append(train_acc_top5)
results["train_acc_mean_pos"].append(train_acc_mean_pos)
results["val_loss"].append(val_loss)
results["val_acc_top1"].append(val_acc_top1)
results["val_acc_top5"].append(val_acc_top5)
results["val_acc_mean_pos"].append(val_acc_mean_pos)
# 6. Update LR scheduler
if lr_scheduler == "step":
scheduler.step()
elif lr_scheduler == "plateau":
scheduler.step(train_loss)
else:
pass
# results["MAE"].append(test_step(model=model, data_loader=test_dataloader, loss_fn=nn.L1Loss(), verbose=False))
# results["RMSE"].append(test_step(model=model, data_loader=test_dataloader, loss_fn=RMSELoss(), verbose=False))
# results["R2"].append(test_step(model=model, data_loader=test_dataloader, loss_fn=R2Score().to(device), verbose=False))
# Save the model
# if save_model_path:
# if save_model_if_mae_lower_than:
# if results["MAE"][-1] < save_model_if_mae_lower_than:
# save_checkpoint(model, optimizer, filename=save_model_path)
# else:
# save_checkpoint(model, optimizer, filename=save_model_path)
# 6. Return the filled results at the end of the epochs
return results
def plot_losses(loss_dict):
train_losses = loss_dict["train_loss"]
val_losses = loss_dict["val_loss"]
epochs = range(1, len(train_losses) + 1)
plt.plot(epochs, train_losses, label="Train Loss")
plt.plot(epochs, val_losses, label="Val Loss")
plt.title("Training and Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.show()
class BatchLoader(torch.utils.data.Dataset):
""" Takes in a Pytorch DataLoader and returns any batch using index
"""
def __init__(self, dataloader):
self.dataloader = dataloader
def __len__(self):
return len(self.dataloader)
def __call__(self, index):
for i, batch in enumerate(self.dataloader):
if i == index:
return batch
raise IndexError("Index out of range")
if __name__ == "__main__":
test_SimCLR()