-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrund.py
183 lines (157 loc) · 5.64 KB
/
rund.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import matplotlib.pyplot as plt
import random
import h5py
import numpy as np
import warnings
from sklearn.neighbors import kneighbors_graph
from sklearn.cluster import SpectralClustering
from sklearn.cluster import DBSCAN
from sklearn.cluster import MeanShift
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.ensemble import IsolationForest
warnings.filterwarnings('ignore', '.*Graph is not fully connected*')
print('reading Cars_sequence...')
file_name = "Object Motion Data (mat files)/Cars_sequence.mat"
f = h5py.File(file_name, "r")
davis = f['davis']
dvs = davis['dvs']
pol = dvs['p'][0]
#ts = dvs['t'][0]
ts = np.load("street_ts.npy")
ts = ts*0.000001
#x = dvs['x'][0]
#y = dvs['y'][0]
aps_ts = np.load("street_img_ts.npy")
#dvs_ts = np.load("cars_all_ts.npy")
print(len(ts), len(aps_ts))
'''
# events frequency distribution
y_eve = []
i = 0
ctr = 0
j = 0
while i<len(ts):
if ts[i] < aps_ts[j]:
ctr += 1
else:
y_eve.append(ctr)
ctr = 1
j += 1
if j==len(aps_ts):
break
i += 1
np.save("event_dist_street.npy", np.asarray(y_eve))
'''
# plot frequency distribution
y_eve = np.load("event_dist_street.npy")
print(y_eve)
print(len(y_eve))
fig = plt.figure()
plt.bar(range(200), y_eve, color='r')
plt.xlabel("Segments")
plt.ylabel("No. of events")
plt.title("Frequency of events in different segments")
plt.show()
print(sum(y_eve))
'''
#without cleaning
n = len(dvs_ts)
last = 0
ALL = len(pol)
NEIGHBORS = 100
ctr = -1
for idx in dvs_ts:
ctr+=1
xx = '0000000000'
yy = str(ctr)
file_name = xx[:len(xx) - len(yy)] + yy
print(last)
selected_events = []
for i in range(0, ALL)[last:idx]:
selected_events.append([y[i], x[i], ts[i] * 0.0001, pol[i] * 0])
if len(selected_events)==6000:
break
last = idx
selected_events = np.asarray(selected_events)
cleaned_events = IsolationForest(random_state=0, n_jobs=-1, contamination=0.05).fit(selected_events)
unwanted_events = cleaned_events.predict(selected_events)
selected_events = selected_events[np.where(unwanted_events == 1, True, False)]
adMat = kneighbors_graph(selected_events, n_neighbors=NEIGHBORS)
max_score = -20
opt_clusters = 2
scores = []
print('predicting number of clusters...')
for CLUSTERS in range(2, 10):
clustering = SpectralClustering(n_clusters=CLUSTERS, random_state=0,
affinity='precomputed_nearest_neighbors',
n_neighbors=NEIGHBORS, assign_labels='kmeans',
n_jobs=-1).fit_predict(adMat)
curr_score = silhouette_score(selected_events, clustering)
scores.append(curr_score)
if curr_score > max_score:
max_score = curr_score
opt_clusters = CLUSTERS
np.save(os.path.join('results/656/predict_k',
file_name + '.npy'),
np.asarray(scores))
clustering = SpectralClustering(n_clusters=opt_clusters, random_state=0, affinity='precomputed_nearest_neighbors',
n_neighbors=NEIGHBORS, assign_labels='kmeans',
n_jobs=-1).fit_predict(adMat)
np.save(os.path.join('results/656/selected_events',
file_name + '.npy'),
selected_events)
np.save(os.path.join('results/656/clusters',
file_name + '.npy'),
clustering)
print('done')
'''
'''
# indices of nearest timestamps
event_idx = []
for t in aps_ts:
idx_t = (np.abs(ts - t)).argmin()
print(t)
event_idx.append(idx_t)
event_idx = np.asarray(event_idx)
np.save("cars_all_ts.npy", event_idx)
print(len(event_idx))
'''
'''
#with cleaning and cluster prediction
ALL = len(pol)
NEIGHBORS = 30
print(str(ALL)+' events in dataset...')
seg = 64
while seg >= 64:
print('dividing the sequence into '+str(seg)+' segments...')
X = ALL//seg
print('each segment has '+str(X)+' events, out of which '+str(X//4)+' events will be selected...')
for sl_no in range(seg):
print('segment no: '+str(sl_no+1))
selected_events = []
for i in range(0,ALL)[sl_no*X:sl_no*X+X:4]:
selected_events.append([y[i], x[i], ts[i]*0.0001, pol[i]*0])
selected_events = np.asarray(selected_events)
cleaned_events = IsolationForest(random_state=0, n_jobs=-1, contamination=0.1).fit(selected_events)
unwanted_events = cleaned_events.predict(selected_events)
selected_events_cleaned = selected_events[np.where(unwanted_events == 1, True, False)]
adMat_cleaned = kneighbors_graph(selected_events_cleaned, n_neighbors=NEIGHBORS)
print('clustering...')
clustering_cleaned = SpectralClustering(n_clusters=2, random_state=0, affinity='precomputed_nearest_neighbors',
n_neighbors=NEIGHBORS, assign_labels='kmeans',
n_jobs=-1).fit_predict(adMat_cleaned)
xx = '0000000000'
yy = str(sl_no)
file_name = xx[:len(xx) - len(yy)] + yy
np.save(os.path.join('results/clean/64/selected_events',
file_name+'.npy'),
selected_events_cleaned)
np.save(os.path.join('results/clean/64/clusters',
file_name + '.npy'),
clustering_cleaned)
seg = seg // 2
break
print('done')
'''