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Determining mass properties with a trifilar
pendulum

Timo Horstschäfer

Abstract—Mass properties of rigid bodies, which include the
center of gravity as well as the inertia tensor play an important
role in the analysis of the motion and the behaviour of moving
objects. This report describes a method of determining the stated
properties by using a trifilar pendulum. After verifying the basic
measurement processes, and testing it against known values, the
methods are put together to obtain a three-dimensional center
of gravity and the complete inertia tensor given in the center
of mass frame of the object being analyzed. All steps are then
carried out on the MUSCAT free falling unit (FFU).

I. INTRODUCTION

THIS report describes a method of determining mass
properties of an object by using a trifilar pendulum. It

gives a method of measuring the three dimensional center of
gravity (CoG) as well as the complete inertia tensor in the
center of mass frame of the object being measured. These
properties are necessary to determine the motion of a rigid
body, e. g. to compute their behaviour as a gyroscope. This is
especially important for the Space and Plasma Physics group
at KTH, Stockholm, which has been sending several units on
the rockets of the REXUS (Rocket Experiments for University
Students) programme. These rockets are spin-stabilized, thus
carried units gyrate quickly upon ejection in the atmosphere.
To analyze the measurements of these experiments, good
knowledge of the mass properties is often necessary.
First, the method of measuring the two-dimensional center of
mass is being described. The precision is tested with a setup
of test objects of known mass properties. Next, the procedure
of measuring the moment of inertia is introduced and again,
tested for precision with well-defined test objects. Finally, the
complete tensor of inertia, based on the previous measurement
techniques is being determined for the MUSCAT FFU (Free-
Falling Unit of the MUltiple Spheres for Characterization of
Atmospheric Temperature experiment).
The work of this report is based on the platform built by Ernest
C. Vallet and uses much of his previous work found in [2].
While his work concentrated on building the actual platform
and giving some theory on the measurement process, this
work focuses on performing these measurements and testing
them against known values, as well as finally carrying out
the whole process with a real unit. The setup was extended
to measure the period of oscillation using a laser beam –
in the previous setup the platform was filmed directly. All
measurements presented here were taken independently. The
code to process the data was written from scratch and is
available in a GitHub repository [4].

II. CENTER OF GRAVITY

In a system of particles the center of gravity can be given by
the relation [1]

R =
1

M

∑
i

miri (1)

M =
∑
i

mi (2)

We can use this relation, since we treat the platform and the
unit as single particles, i. e. we have

R =
mprp +muru

mp +mu
(3)

However, we do not know any of the coordinates ri. But since
we are only interested in the position of the center of gravity
of the unit, we can perform two measurements of the platform,
with and without the unit, to extract the wanted information.
The measurement works by placing the platform on three
support points, given by sharp spikes. The central spike is
in the geometric center of the platform, and hence has the
coordinate sc = (0, 0). The other support points are attached
to the end of each arm and placed on a precision scale. When
placed on the spikes, the platform stands on three support
points, which are the central spike and two arms, while one
arm is always free in the air (figure 2).
As the scales give the equivalent of a mass placed at the
support point and the mass on all support points together sum
up to M , we can write

R =
(M − g1 − g2)sc + g1s1 + g2s2

M
(4)

=
g1s1 + g2s2

M
sc = (0, 0) (5)

where gi denote the mass equivalents measured by the scales.

(a) (b) (c)

Fig. 2: Fixed platform with MUSCAT FFU on the central spike
(a), support point on a scale (b) and the free arm (c).
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Fig. 1: Two pictures showing the trifilar pendulum with the MUSCAT FFU mounted on the plastic ring, also giving the
coordinate system used for the measurements. The first picture shows the free pendulum, whereas the second shows the
pendulum on the support points. The vector corresponding to L is parallel to the z axis, whereas the vectors for R lie in the
xy plane. They look different on the picture due to perspective distortions.

Equating with (3) gives

mprp +muru = g1s1 + g2s2 (6)

Repeating the measurement without the unit then gives

mprp = g′1s1 + g′2s2 (7)

And substracting the two equations hence yields the 2D CoG
formula

ru =
(g1 − g′1)s1 + (g2 − g′2)s2

mu
(8)

where g is the total g value and g′ is the platform g value.
Hence, the difference g − g′ then represents the bare unit g
value as wanted. The test mass can then be used to repeat this
measurement under different conditions. This gives statistics
about the real center of gravity of the unit and since the
mass and position of the test mass is known, it adds a known
contribution to the values of the scales.

A. Testing the single scale measurement

To check, if the above procedure works as expected, we need
to test it against a known property. Therefore, we select one
arm to be tested and perform measurements using a test mass
placed at different positions on the arm, see figure 3.
Assuming, that the test weight only affects the arm, which it
is placed on, thus giving g2 = g′2, we find from (8)

r =
(g − g′)s

m
(9)

Taking the absolute value, we thus have

g =
mr

s
+ g′ (10)

= gt(r) + g′ (11)

which predicts the result of the measurements to be a linear
function in r shifted by the constant value g′1.
A test has then been performed on each arm with a nut
of mass 10.40 g placed at positions r ∈ [25, 75] cm in

steps of 5 cm, thus giving a total of 11 measurements. To
estimate the constant g′, we take the mean difference of these
measurements between the obtained values of g and gt. This
quantity is used again in many other plots and is thus given
as

δg ≡ g − gt (12)

where the bar denotes the mean over the measurements of the
particular series.
Adding it to gt places the theoretical curve directly upon
the measured, thus making it easy to see any deviations.
As the platform was not in perfect equilibrium during the
measurement, the values on the scales were not constant.
Thus, a constant uncertainty of 0.2 g has been assumed for all
measurements using the scales. The results are given in figure
4 show a very good agreement with the theoretical prediction.
This procedure of using a test mass to obtain a series of g
measurement is used again in the next section.

B. 2D center of gravity in a plane

The procedure of the section above was the extended to
measure the center of gravity of a unit in the two-dimensional

Fig. 3: A nut as test mass placed on an arm.
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Fig. 4: Measurement curve of the single scale test. Each point
represents one measurement of gi with an uncertainty of 0.2 g.
The theoretical prediction gt is shifted by the mean difference
δg, such that the lines are placed upon each other. Only
little to no deviation from the prediction can be observed.
[SingleScale.py]

# mass [g] arm position [cm]

1 10.40 1 25
2 48.07 2 50
3 10.54 3 50

TABLE I: Properties and positions of the objects used for the
2D center of gravity determination test.

value rel. σ

g2 − g′2 21.777(99) g 0.45 %
g3 − g′3 2.678(69) g 2.56 %

Rx −119.0(1.6) mm 1.32 %
Ry −273.3(1.2) mm 0.45 %

TABLE II: Results of the 2D center of gravity determination
of 3 test objects. [CoG.py]

xy plane of the platform. Using the estimate of g′ from the
previous section, we could measure the value g with the
unit and then find g − g′. However, it was found, that it is
very difficult to set up the platform exactly in the same way,
such that the measured value g′ remains constant. Thus, to
determine the center of gravity, we take two series of g on
each arm, with and without the unit. Substracting the two
resulting curves for one arm then directly gives us a series
of measurements of gi − g′i, of which the mean value can be
taken as the final result.
To test the precision of this procedure, three weights have been
placed on the platform. Their weights and positions are given
in table I. The position given in cm refers to the distance of
the weight to the center of the platform. Since all positions
and masses are known, the resulting center of gravity can be
directly calculated by using equation (2). The result is given
as Rt in table III. Five positions of the test mass ranging from
25–75 cm in steps of 10 cm have been used to determine g−g′.
As a constant quality control, the curve gt + δg is given as a
reference for each curve of gi and g′i. They are shown in figure
5. The measured quantities are given in table II. The given
uncertainties denote the standard deviation of the measured
values. Comparing the measured center of gravity with the one
we have calculated, we note however, that measured point is
displaced by roughly 3 mm on each axis, giving a total distance
of 5 mm to the predicted center of gravity. This is seen in table
III, where Rm is for the measured center of gravity. This can
be due to systematic errors in the measurement procedure and
has to be investigated further, if more precision is required. A
detailed error calculation might be helpful to find out, if this
error is due to lack of precision in the determination of the g
values.

III. 3D CENTER OF GRAVITY

Since we want to obtain the center of gravity of our unit
in three dimensions, we need to combine two measurements
of the 2D center of gravity as described in section II-B. For
example, by placing the unit in its original orientation, where
the z axis points up (here called z+), a measurements in the
xy plane of the platform gives the x and y components of the
3D center of gravity. See also figure 6. Then rotating the unit
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x [mm] y [mm]

Rt −116.6 −269.0

Rm −119.0 −273.3

Rt −Rm 2.4 4.3
∆R
R

2.0 % 1.6 %

TABLE III: Experimental results of the 2D center of gravity
determination compared to the theoretical prediction using eq.
(2).
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Fig. 5: Measured g curves for the 2D center of gravity
test plotted against the prediction gt for verification of the
measurement procedure. [CoG.py]

by 90 degrees, such that the y axis points downward (y−),
the same measurement yields the x and z coordinates of the
3D center of gravity Alternatively, we can let the x axis point
downward (x−) to obtain the z and y component from the
measurement.

IV. MOMENT OF INERTIA

If we rotate the trifilar pendulum by a few degrees and
let it move freely, the period of the resulting oscillation is
directly related to the moment of inertia. Thus, to determine
the moment of inertia, we need to measure that period of
oscillation. By analyzing the equations of motions of the

z

x

y

x

z

y

y

x

z

Fig. 6: Possible orientations for center of gravity measure-
ments. Starting with z+ in the middle, one obtains y− and
x− by simple rotations.

(a) (b)

Fig. 7: Mounted GoPro camera (a) and projected laser dot
with room lighting switched off (b).

trifilar pendulum, the relation connecting the two quantities
can be simplified to [2]

I =
R2

(2π)2L
mgT 2 (13)

where T denotes the period of the oscillation of the trifilar
pendulum. L is the length of the cables, that hold the platform
and R is the distance from the attachment point of these
cables to the center of the platform. Figures 1 shows the two
quantities on the real platform. The cables are parallel to the
z axis, however due to perspective distortions, they appear
different in the picture.
The equation requires, that the center of gravity is in the
geometric center of the platform. For the generic case, the
factor R2

(2π)2L has to be replaced by a more complicated
expression. However, since the no major deviations from
the prediction have been observed, it is assumed, that this
approximation suits the precision required in this experiment.
To measure the oscillation period, a fixed laser beam points
on a tiny mirror, which is mounted on arm 3 of the platform.
The reflected beam is then projected onto a white paper on the
wall behind the laser pointer and there filmed with a camera.
When the pendulum rotates, the angle of the reflected beam
changes, thus resulting in a periodic movement of the laser
dot on the white paper. A GoPro Hero video camera is used
to record a video of the laser dot at 240 frames per second.
To greatly enhance the contrast of the resulting video file,
the room lighting must be turned off during measurement and
the desk lamp at the platform used instead to work with the
platform. The camera mount and the laser dot is shown in
figure 7.
To analyze a video, each frame is converted to HSV (Hue-
Saturation-Value) color space and filtered for the range
(150,0,100) – (349,255,255). This selects only the pixels of the
laser dot, as demonstrated in figure 8. The first order moments
of the filtered image for the x, resp. y axis divided by the
total area of the dot then give the coordinates of the point in
a particular frame.
The analysis is done by a simple program in C++, which uses
the OpenCV (Open Source Computer Vision) library for image
analysis. Since this requires some computing power, analyzing
a 20 s video with a resolution of 848 x 480 / 240 fps takes up
to 30 s on an Intel i5-2540M.
The platform rotation causes the laser dot to move roughly
along a line on the wall. If the camera was mounted in perfect
alignment with this line, there would be no movement in the
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Fig. 8: Image from a video capture of the GoPro camera. The
left side shows the original image and the right side shows the
image filtered by the HSV range (150,0,100) – (349,255,255).
[track.cpp]

y direction of the recorded video file. As the camera is not
aligned perfectly, the dot also slightly oscillates around the y
axis. However, this only scales the amplitude of oscillation in
x direction and does not change the actual perdiod. Hence,
the y component can be ignored.
Figure 9 shows the spectrum of a recorded wave. As there are
two peaks and we additionally assume a slight damping on
longer measurements, a fit using two damped sine waves has
been chosen. The fitting function is thus defined as

f(A, τ ,T , δ, C, t) =

2∑
i=1

Aie
−τit sin

(
2π

Ti
t+ δi

)
+ C (14)

Of the two resulting waves, the one with the greater amplitude
is taken as the wavefunction to determine T . The example
curve along with the fit and the residual can be seen in figure
9. The fit is performed as a least-square fit. Its success is
heavily dependent on the initial parameters. They have to be
adjusted, if the period differs a lot between two measurements.

A. Characterization

To gather information about the precision of the measurement
procedure and to find out, which recording duration of the
video measurement is suitable, three series were taken with
different recording durations. One series consists of placing
two nuts as a test mass with a total weight of 20.94 g on one
arm at the positions from 25–75 cm in steps of 5 cm. The
chosen recording durations were 5, 10 and 20 s.
Again, we test the measurement against a theoretical predic-
tion. The theoretical moment of inertia of a single object of
mass m at distance r is given by

It = mr2 (15)

So, as we move the test mass, the measured moment of inertia
should rise as r2.
The moment of inertia of multiple objects is just the sum
of the individual moments. Thus, our measurement series is
shifted by a constant value compared to the prediction It. This
constant then simply is the moment of the bare platform, which
is finally evaluated in this measurement Thus, by adding the
mean difference between the measurement and the prediction
to It places the two curves on each other, allowing easy
verification of the prediction. We denote this quantity with

δI ≡ I − It (16)
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Fig. 9: Sample data from the x component of a tracked
video file showing the spectrum and the raw signal with the
fit performed using function (14), as well as the difference
between the fit and the data. The signal is shifted to the origin
for better readability of the results. No unit on the vertical
axes is given, since the overall magnitude is irrelevant for the
frequency of oscillation. [signal.py]

For the measurement uncertainty, we have an error in the
quantities R, L, m and T . The values of R and L are
obtained with a tape measure and thus have the same error
of ∆R = ∆L = 0.5 mm. The error in m is ∆m = 0.5 g. For
T the error is taken from the uncertainty of the least-square
fit and is thus different for each measurement. For a 5 s video
it is usually of order 10−5 s. The error in I is then given by

∆I =

∣∣∣∣ ∂I∂R
∣∣∣∣ · |∆R|+ ∣∣∣∣ ∂I∂L

∣∣∣∣ · |∆L| (17)

+

∣∣∣∣ ∂I∂m
∣∣∣∣ · |∆m|+ ∣∣∣∣ ∂I∂T

∣∣∣∣ · |∆T | (18)

=

(
2

∆R

R
+

∆L

L
+

∆m

m
+ 2

∆T

T

)
I (19)

The resulting plots of the three measurement series are given
in figure 10. As can bee seen in the figures, the measured
moments follow the prediction quite well. One can see a slight
increase with the longer recording duration. The numerical
results for the platform moment are given in table IV, with
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video duration [s] Ip [ kgm2] rel. σ

5 0.23479(35) 0.15 %
10 0.23452(29) 0.12 %
20 0.23448(21) 0.09 %

TABLE IV: Computed platform moment and errors derived
from the calibration curves. [Inertia.py]

the uncertainties given as standard deviations of each measure-
ment series. One can see, that the overall uncertainty of the
measurement is in the already range of ±0.00035 kg m2 for a
5 s measurement and reduces only slightly, as the measurement
duration gets longer. For comparison, the two nuts, used as test
mass, with a total weight of 20.94 g placed at 25 cm produce
a moment of inertia of I ≈ 0.0013 kg m2. Therefore, for
practical purposes, a measurement duration from 5–10 s can
be recommended.

V. INERTIA TENSOR

The inertia tensor in matrix representation is given as

I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (20)

where Iij are the moment of inertia coefficients. It thus takes
6 independent measurement to get the full inertia tensor.
Defining an arbitrary normalized vector

n = αx+ βy + γz (21)

where α2 + β2 + γ2 = 1, we write the moment of inertia as
[1]

I = Ixxα
2 + Iyyβ

2 + Izzγ
2 + 2Ixyαβ + 2Iyzβγ + 2Izxγα

(22)

Using this representation, we can find a simple set of mea-
surements along an axis to deduct the whole inertia tensor.
By measuring the moment of inertia on a diagonal axis,
i. e. mounting the unit at an angle of 45◦, we obtain simple
expressions for elements. Table V lists the six orientations and
resulting expressions for the measured moments of inertia.
From now on, the notation given in the table is used, e. g.
orientation xx means measuring along the x axis, whereas xy
means measuring along the diagonal axis given by n = x+y√

2
.

Thus, if we want to determine the element Iyz and measure
I in the yz axis, we first also need to obtain Iyy and Izz and
then find Iyz = I − Iyy+Izz

2 from our previous measurement.

A. Parallel axis theorem

By simply measuring the moments of inertia in the given
orientations, we obtain the inertia tensor in the center frame
of the unit. However, the more interesting quantity is the
inertia tensor of the unit in the center of mass frame. The
parallel axis theorem states that for a body with the center
of gravity displaced by the perpendicular distance R, the
measured moment if inertia is

I = Ic +mR2 (23)
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Fig. 10: Measurement series for the inertia characterization
with different recording durations plotted against the parabolic
prediction It of eq. (15). The measurement curve is shifted by
the average mean δI to place the curves upon each other.
[Inertia.py]

where Ic is the actual moment of inertia in the center of gravity
frame of the body. We thus have to subtract the term mR2

from all our measurements, where R is the distance from 3D
center of gravity to the measuring axis. The distance of a point
p from a line x = a+ tn can be calculated by

R = ||(a− p)− ((a− p) · n)n|| (24)

And since the axes all have their origin in a = 0, we simply
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orientation definition n I

xx α = 1 x Ixx

yy β = 1 y Iyy

zz γ = 1 z Izz

xy α = β = 1√
2

x+y√
2

Ixy +
Ixx+Iyy

2

xz α = γ = 1√
2

x+z√
2

Ixz + Ixx+Izz
2

yz β = γ = 1√
2

y+z√
2

Iyz +
Iyy+Izz

2

TABLE V: Orientations with unit vectors and resulting for-
mulas for the moment of inertia measurement.

(a) (b)

Fig. 11: Small pins attached to the plastic ring (a), that fit into
the 3 holes on the unit surface (b) make easy to mount the
unit in the 6 different orientations.

have

R = ||p− (p · n)n|| (25)

VI. ANALYSIS OF THE MUSCAT FFU

To apply the whole procedure, the Free-Falling Unit (FFU)
from the MUSCAT project has been analyzed. Since the unit
has the shape of a sphere, it is easily possible to mount it in
the required orientations.
Unfortunately, the FFU did not fit well on the platform, as the
three spikes in the middle had a too big distance from each
other to support the unit. Additionaly, the spherical shape make
it difficult to rotate the unit by exactly 45 or 90 degrees. To
overcome this issue, a plastic ring was made, which fits onto
the three spikes in the center of the platform and has a smaller
inner radius, such that the unit fits well onto the ring. In order
to mount the unit in the desired angle, two small pins were
attached to the ring. On the other side, three tiny holes with
a diameter of a about 1 mm were drilled into the sphere. The
two pins and the three holes allow us to mount the sphere in
six different orientations on the platform, which correspond
exactly to the six axes as given in table V. Figure 11 shows
the plastic ring on the platform with the two pins and the three
corresponding holes on the spherical FFU. More details on the
construction is given in appendix B. Unfortunately, the axes
names drawn currently on the unit surface have the x and y
axes swapped compared to the coordinate system given here.
This is corrected in all measurements shown here, but has to
be taken into account for future measurements!
Once the unit can be mounted in the needed orientation, a
total of 15 measurement series have to be performed. Eight
are required to obtain the 3D center of gravity, one for the
platform inertia and the additional six for the moment of inertia
coefficients. This is a very tedious process, and thus could be
improved in the future.

rel. σ
2D center of gravity (x− orientation)

g1 2.932(50) g 1.69 %
g3 0.884(22) g 2.54 %
Rx -1.409(54) mm 3.87 %
Ry -6.15(10) mm 1.69 %

2D center of gravity (z+ orientation)

g2 0.730(37) g 5.05 %
g3 -0.84(10) g 12.46 %
Rx -2.92(29) mm 9.86 %
Ry -1.531(77) mm 5.05 %

3D center of gravity

Rx -2.92(29) mm 9.86 %
Ry 2.309(75) mm 3.24 %
Rz -1.409(54) mm 3.87 %

Distance from origin

D 3.73(17) mm 4.67 %

TABLE VI: Complete set of results for determining
the 3D center of gravity of the MUSCAT FFU.
[InertiaTensor.py]

As introduced before, we test each measurement series against
the prediction, which is

gt =
mr

s
It = mr2

as given in equations (15) and (11). The mean difference δg is
added, to place the two curves upon each other. A nut of mass
10.55 g was used as a test mass for all series. The results are
given in figure 13 for the center of gravity measurements and
the inertia tensor measurements. No major deviations from the
predicion could be observed. Table VI lists the results from the
center of gravity measurements. Note, that the value gi−g′i is
abbreviated simply as gi. As one can see, the center of gravity
is slightly displaced from the geometrical center of the unit
by a about 4 millimeters with a relative deviation of about 5
%. However, as seen in the 2D center of gravity measurement
in section II-B, there might be some systematic error, so the
real center could be shifted by another few millimeters.
The results on the inertia measurements for the single axis
are listed in table VII. Also listed there are the values for
the parallel axis correction. Comparing these to the actual
moments of inertia, their magnitude is very small, since the
center of gravity lies close to the geometrical center. The final
result of the inertia tensor is given in table VIII. The off-
diagonal elements are very small, their values are even below
the measured deviation. Thus, we can conclude, that the unit
is balanced in its geometrical frame.

VII. IMPLEMENTATION

The code to analyze the measurement results is written in
Python and relies heavily on numpy, scipy and matplotlib.
Experimental data is read from JSON (JavaScript Object Nota-
tion) files. The complete project is available in the repository
on GitHub at [4]. And includes all script, which were used
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axis I [ gm2] rel. σ R [mm] mR2 [ gm2]

xx 2.283(89) 3.91 % 2.70 0.0030
yy 2.189(73) 3.32 % 3.24 0.0043
zz 2.404(97) 4.02 % 3.72 0.0057
xy 2.25(15) 6.80 % 3.96 0.0065
xz 2.384(79) 3.31 % 2.54 0.0027
yz 2.43(20) 8.30 % 3.93 0.0064

TABLE VII: Moment of inertia measurements of the MUSCAT
FFU along the axes to compute the inertia tensor. Also given
is the perpendicular distance of each axis to the 3D center
of gravity, as well as the resulting correction mR2 from the
parallel axis theorem. [InertiaTensor.py]

axis I [ gm2] rel. σ

Ip 244.9(15) 0.61 %
Ixx 2.283(89) 3.91 %
Iyy 2.189(73) 3.32 %
Izz 2.404(97) 4.02 %
Ixy 0.02(13) -
Ixz 0.04(14) -
Iyz 0.14(23) -

TABLE VIII: The inertia tensor of the MUSCAT FFU.
[InertiaTensor.py]

to create the plots in this report. Thus, all the measurements
results are also stored in the repository.
The video tracker tool is written in C++ and thus has to be
compiled for the platform in use. The code is mostly adapted
from the website [3].
It was tried to keep the code as modular as possible and to
reuse existing code. Thus, the actual scripts to perform the
calculations in the report mostly consist of reading in the data
from the JSON files and calling a function to analyze the
measurement series. Each section, which contains analysis of
measurement results is carried out by another script in the main
folder of the repository. The script names, which were used
to obtain the values and plots are given for reference on each
table and figure shown in this report. Each script outputs the
measurement values on the console and writes the diagrams
into the out folder

VIII. CONCLUSION

We have developed a method for testing the basic functions
of the measurement like measuring the shift of the center of
gravity caused by placing an object onto the platform as well
as the moment of inertia of the whole system. These have
then been combined to measure the center of gravity of the
object first in two dimensions, then finally in 3 dimensions.
This information helped us to correct the measured moment
of inertia coefficients, which where then used to compute the
complete inertia tensor.
While there was some deviation between the measured center
of gravity in two dimensions and the predicted position, the
measurements themselves show only small relative standard
deviations in the order of 1 % in the experiments. However, the
difference between the experimental value and the prediction
has to be investigated more thoroughly in a future work.

The moment of inertia measurement of the platform has
been done with a quite high precision, giving only a relative
standard deviation of 0.1 %. But since the platform moment is
much higher than the that of the actual unit being measured,
this precision may not be sufficient for many cases. As can
be seen, the relative standard deviation on the MUSCAT FFU
measurements goes up to 8.3 %! This precision could maybe
easily be increased by just capturing longer videos with the
GoPro camera. Another way to increase the precision might
be the use of the general expression of eq. 13 as found in [2].
Finally, all the code is given to combine the measurements to a
complete determination of the inertia tensor. Nevertheless, an
error analysis of this computation has yet to be done, in order
to identify the inputs, that are most crucial in the precision of
the single coefficients. This could also be part of some future
work.
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APPENDIX A
INSTRUCTIONS ON DETERMINING THE INERTIA TENSOR

In this section, we describe the necessary steps to do a full
measurement of the inertia tensor.
a) Preparations:

• Choose a test weight, e. g. a small nut.
• Choose the positions to place the nut on a arm for the

measurement series, e. g. 30–70 cm in steps of 10 cm.
• Make sure, that you can mount the unit in all required ori-

entations xx, yy, zz, xy, xz, yz, with the center of these
axes vertically aligned at the platform center.

b) Center of gravity:

1) Choose two orientations on the main axes, e. g. xx and
zz.

2) For each orientation, perform the measurement of the
2D center of gravity:

a) Place the unit at the platform in the given orienta-
tion.

b) Raise the central spike and the two support points
with the scales.

c) Use a bubble level on each supported arm to align
the platform to the xy plane.

d) For each supported arm, take a measurement series.
i) For each position, place the test mass and note

the value on the scale.
e) Remove the unit.
f) Take a measurements series again on each arm, that

has been supported when the unit was placed on
the platform. The test mass makes the arm stay on
the support point.

c) Inertia tensor:

1) Lower the central spike and the support point, such that
the platform can move freely again.

2) Point the laser on the mirror on arm 3, such that it is
visible on the paper sheet at the wall.

3) Switch off the room lighting and use the desk lamp
instead. The laser dot then becomes clearly visible.

4) For each orientation, place the unit on the platform and
perform a measurement series.

a) Place the test mass at the desired position.
b) Rotate the platform by a small degree, such that

the laser dot on the wall moves by about 10 cm.
c) Record a video with the GoPro camera of at least 7

seconds. For this purpose, the WiFi remote is very
useful.

5) Remove the unit and perform one measurement series
with the platform alone.

6) Copy the video files from the GoPro camera and
rename them after the scheme axis/position.MP4.
The position of the test mass must given in meters with
two decimals, e. g. xx/0.30.MP4. This means, that
there is a seperate folder for each orientation.

d) Use the code: To apply the code on the just taken mea-
surements, the results must be entered in a JSON file. As a
starting point, the file FFU.json should be used, which is also

attached to this document for reference. Now follows a short
description of the parameters found in the file.

1) Masses are given in kg for parameters unit mass,
platform mass and test mass.

2) positions are given in m.
3) Center of gravity measurements in cog

a) axes describes the two axes in which the 2D
CoGs were measured. Currently supported are
“xy”, “xz” and “yz”. The later measurement series
must be given in exactly this order!

b) data holds two measurement series, one for each
CoG in the order given in axes.
i) name can be freely chosen and is displayed in

the output to make the result more readable.
ii) free arm gives the arm, that is not supported

by a support point.
iii) series contains the measurement series for

gi and g′i.
A) name another freely chosable name.
B) data series for gi in gram!
C) platform series for g′i in gram!

4) initial parameters have to be given for the
least-square fit performed on the filmed inertia wave.
These parameters are critical for the success of the
fit. If the fit fails, a list of the previously successful
parameters is printed. These can be copied into the
JSON file for the next try. They are given in the order
A1, τ1, T1, δ1, A2, τ2, T2, δ2, C, as they appear in eq.
(14).

When the file is prepared, it has to be stored in the same
directory, which holds also the video files from the inertia
measurements.
Finally, the script InertiaTensor.py can be used. The
name and path to the JSON file is given in the script itself,
and thus has to be adjusted. If the script runs without errors,
it should output a list of all variable as they appear in tables
VI, VII and VIII.
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APPENDIX B
CONSTRUCTING AXES ON A SPHERE

The outer appearance of the MUSCAT FFU consists of two
hemispheres and a hole for an electrical connector. The sphere
has a radius of r = 6.2 mm. Since we need to mount it in
6 different orientations on the platform, there was a need
to construct the main axes on the surface, which have a
right angle between each other, as well as the diagonal axes,
which are inclined at 45 degrees relative to the main axes.
Additionaly, these axes have to be aligned to the reference
frame of the platform.
The construction was finally carried out using a compass and
some geometrical considerations to construct a circle with
an arbitrary perpendicular radius on the sphere surface. For
this reason, a formula was derived to calculate the radius of
compass circle needed to draw a circle of radius R on the
surface of the sphere. Looking at figure 12, we want to find
the length c in dependence of the radius r of the sphere and
the radius R of the circle, we want to construct.
The fomula then can be found as

a =
√
r2 −R2 (26)

b = r − a (27)

c(R) ≡
√
R2 + b2 (28)

=

√
2r2 − 2r

√
r2 −R2 (29)

= r

√√√√√2

1−
√

1−
(
R

r

)2
 (30)

Now, by using this formula for R = r, we can draw the equator
for a given point on the sphere. In this case the equation eq.
(30) reduces to

c(R = r) =
√

2 r (31)

Taking an arbitrary point and drawing the equator and then
drawing the next equator from another point on the equator
line, we can construct the main axes, which have an angle of
90 degree to each other.
The next step is to draw the diagonal axes. For this purpose,
we use R = r sin π

4 = r√
2

and thus find

c

(
R =

r√
2

)
=

√
2−
√

2 r (32)

By drawing circles of this radius around each axis point, we
find the diagonal axes at the circle intersections.
Finally, we want to mark the circle, where the plastic disk
touches the surface, when the unit is placed on the platform.
The plastic disk has an inner radius of R = 9.14 mm. To draw
this ring on the sphere, we thus need to set the compass to
c ≈ 5 mm.
When drawing these circles around each of the 6 axis points,
it has been observed, that they intersect at exaclty 3 points,
where each circle has 2 intersection points. This was then the
reason to drill tiny holes into the sphere surface and attach
pins to the plastic ring. With this setup, the unit can now be
mechanically fixed to the platform in one of the 6 orientations.

r

θ
R

c

a b

Fig. 12: Cross-section of a sphere with radius r. Here R
denotes the perpendicular radius of a circle on the surface and
c gives the distance to be used on the compass to construct
the given circle.
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APPENDIX C
INERTIA TENSOR MEASUREMENTS CURVES
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Fig. 13: Complete set of measurement curves for the inertia tensor of the MUSCAT FFU. Shifted upon theoretical predictions
gt and It to verify the linear/quadratic shape. [InertiaTensor.py]
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APPENDIX D
SAMPLE DATA

Listing 1: FFU.json
{
"unit mass": 0.413,
"test mass": 10.55e-3,
"platform mass": 1.007,
"initial parameters": [ 7.06236450e+01, 6.60490167e-03, 8.32935942e-01, 1.4422

9689e+00, 1.48813333e+01, 3.06163121e-03, -2.00470840e+00, 1.42074061e+01
, 4.25097725e+02],

"positions": [ 0.3, 0.4, 0.5, 0.6, 0.7 ],
"cog": {

"axes": "xz",
"data": [
{
"name": "R_x",
"free arm": 2,
"series": [
{
"name": "g_{x,1}",
"data": [ 4.95, 6.03, 7.08, 8.14, 9.26 ],
"platform": [ 2.11, 3.09, 4.13, 5.20, 6.27 ]

},
{
"name": "g_{x,3}",
"data": [ 7.35, 8.46, 9.48, 10.54, 11.60 ],
"platform": [ 6.49, 7.54, 8.61, 9.67, 10.70 ]

}
]

},
{
"name": "R_z",
"free arm": 1,
"series": [
{
"name": "g_{z,2}",
"data": [ 2.92, 3.99, 5.05, 6.14, 7.18 ],
"platform": [ 2.19, 3.25, 4.29, 5.38, 6.52 ]

},
{
"name": "g_{z,3}",
"data": [ 5.50, 6.61, 7.74, 8.84, 10.07 ],
"platform": [ 6.45, 7.53, 8.59, 9.67, 10.72 ]

}
]

}
]

}
}
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