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ABSTRACT. It is proposed to supplement the critical level, 
as used in ordinary significance testing, by a measure of the 
magnitude of the departure of the observed set of data from 
the hypothesis to be tested. This measure, which is called the 
redundancy, appears in two versions, one microcanonical (or 
combinatorial) and the other canonical (or parametrical). The 
microcanonical redundancy is obtained by dividing minus 
the logarithm of the critical level by the Boltzmann entropy of 
the experiment and the canonical redundancy by dividing 
minus the logarithm of the likelihood ratio by the Gibbsian 
entropy. An approximation theorem shows that the former 
may be approximated asymptotically by the latter. The 
problem of calibrating the redundancy scale is discussed in 
connection with a series of examples, and, finally, certain 
considerations concerning the size of a statistical experiment 
are given which are based on the redundancy rather than the 
power function. 
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Introduction 

In statistical practice, we are faced with the follow- 
ing dilemma. When the number of observations is 
small, that is, when we have little information about 
the random phenomenon that we are studying, we 
easily get a positive result: this or that model fits 
the data satisfactorily, whereas with large sets of 
data our results are purely negative: no matter what 
model we try, we are sure to find significant devia- 
tions which force us to reject it. Exceptions are per- 
haps afforded by randomizing machines specially de- 
vised for the purpose of producing random sampling 
numbers. Even die casting leads to significant devia- 
tions from the hypothesis of equal probabilities for 
the six faces if one is sufficiently persistent, like 
Weldon with his 26 306 throws of 12 dice (see Fisher, 
1925). 

This indicates that for large sets of data it is too 
destructive to let an ordinary significance test de- 
cide whether or not to accept a proposed statistical 
model, because, with few exceptions, we know that 
we shall have to reject it even without looking at 

the data simply because the number of observations 
is so large. In such cases, we need instead a quantita- 
tive measure of the size of the discrepancy between 
the statistical model and the observed set of data 
which will allow us to decide whether this discrep- 
ancy, although highly significant, that is, not at- 
tributable to chance, is nevertheless so small that 
the model must be considered as providing a satis- 
factory approximate description of the data. 

For certain special models or classes of models 
various such measures have indeed been introduced. 
For instance, in an r x s contingency table with a 
total of n observations, the quantity 

2 

n (min(r, s) - 1)' 

which has been normalized so as to take its values 
in the closed unit interval (see Cramer, 1945), 
measures the deviation from the hypothesis of in- 
dependence. But it is not at all clear that it is mean- 
ingful to compare the values of this quantity for dif- 
ferent contingency tables on a common scale. In 
fact, from the point of view adopted in the present 
paper, this will turn out not to be the case. To make 
different values of the mean square contingency 
x2In comparable, it should instead be normalized 
by dividing by twice the sum of the entropies of the 
marginal distributions of the contingency table for 
which it has been calculated. 

Microcanonical redundancy 

Let X be a discrete sample space. By a statistic, I 
shall understand a function t(x) which is defined 
on X and takes its values in some discrete set T 
and which is such that the set Xt, which consists of 
all outcomes x such that t(x) = t, is finite for all 
choices of t in T. The sets Xt were called isostatis- 
tical regions by Fisher (1921). Let f(t) denote the 
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number of elements in Xt, that is, the number of 
outcomes x such that t(x) = t. In statistical mechan- 
ics, the function f(t) is called the microcanonical 
partition function or, as in Khinchin (1949), the 
structure function. Also, the uniform distribution on 

xt, 

Pt(x)= f(t) if t(x)=t, 
0 otherwise, 

is called the microcanonical distribution after Gibbs. 
It is defined, of course, only if Xt is nonempty, that 
is, if f(t) =4=0. 

A statistical description of the outcome (or data) 
x consists of the observed value of t(x) together with 
the information that x can be considered as drawn 
at random from the set Xt of all those outcomes x' 
for which t(x') = t = the observed value of t(x). 

By a (reductive) hypothesis, I mean a hypothesis 
of the form 

the data x can be described not only by the statistic 
t(x) but already by the simpler statistic u(x) = u(t(x)). 

Here u(t) is a function defined on T with values in 
some discrete set U. Now, suppose that the hypo- 
thesis is true, that is, that x can be considered as 
drawn at random from the set Xu, of all outcomes 
x' for which u(x') = u = the observed value of u(x). 
The corresponding microcanonical distribution is 

[ 
if u(x)=u, 

pu(x) = j g(u) 

10 otherwise. 

Hence, under the hypothesis, the distribution of 
t(x) becomes 

PU(t)=[g(t) if u(t) =u, 

0 otherwise, 

where, of course, 

9(u) = Y f(t) 
u(t)=u 

is the structure function determined by the statistic 
u(x) = u(t(x)). 

I regard it as a fundamental principle that the 
smaller the numberf(t(x)) of outcomes is that realize 
the observed value of t(x), the more does our ob- 
servation x contradict the hypothesis that the sta- 
tistic t(x) can be reduced to u(x) = u(t(x)). By fun- 
damental principle, I mean that it does not seem 

possible to reduce it to any other more basic or 
convincing principles. 

According to the fundamental principle, we should 
define the critical level by 

1 f(t') 
XI g(u) t g(u) 

f(t(x,))<f (t) f (t )-<f (t) 

and reject the hypothesis for the outcome x on the 
level e provided e(t(x)) s e. I have proposed to call 
this test, which was introduced in Martin-Lbf 
(1970), the exact test of a reductive hypothesis since 
it is a general formulation of the procedure used by 
Fisher (1934) in his so-called exact treatment of a 
2 x 2 contingency table. 

The statistical interpretation of the critical level is 
as usual that 

e(t(x)) is the probability of getting an outcome which 
deviates at least as much from the hypothesis as the 
observed outcome x. 

Here the probability is with respect to the micro- 
canonical distribution determined by u = the ob- 
served value of u(x). However, in addition to the 
statistical interpretation, the critical level allows an 
information theoretic interpretation which says that 

- log2 s(t(x)) is the absolute decrease in the number 
of binary units needed to specify the outcome x 
when we take into account the regularities that we 
detect by means of the exact test. 

Let us namely order the g(u) outcomes x for which 
u(x) = u according to their associated values of 
f(t(x)) 

X1L X2 ... 

A*Jxl) -<f(t(X2)) -s --- 

and give them binary codes as follows 

X1 X2 X3 X4 ... 

1 10 11 100 ... 

Then the length of the binary code of an outcome 
x for which u(x) = u is at most roughly 

log2 : 1 = log2 A f(t'). 
f(t(X'))'f (t(x)) f(t')<_f(t(X)) 

This should be compared with 

log2 g(u) 

which is roughly the number of binary units that 
we need in general to code an outcome x for which 
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we only know that u(x) =u. Hence the (absolute) 
decrease is 

log2 g(u) - log2 A f(t') = - log2 c(t(X)). 

f (t 1) < (t W)) 

It is hardly astonishing that for large sets of data, 
that is, for large values of log2 g(u), say of the order 
of magnitude 106, it will only very exceptionally be 
the case that - log2E (t(x)) <10 which is required 
for acceptance of the hypothesis on the level of 
significance 0.001. This is remedied by considering, 
instead of the critical level, the microcanonical re- 
dundancy 

R(t) 
log e(t) u(t) u 
Iogg(u) ( 

which is, of course, independent of the base of the 
logarithms. Since 

< E(t) 1 
g(u) 

we have 

0 s R(t) < 1 

with R(t) = 0 and 1 corresponding to e(t) =1 and 
l/g(u), that is, perfect and worst possible fit, respec- 
tively. The interpretation of the microcanonical re- 
dundancy is obtained directly from the information 
theoretic interpretation of the critical level. Thus 

R(t(x)) is the relative decrease in the number of 
binary units needed to specify the outcome x when 
we take into account the regularities that we detect 
by means of the exact test. 

Example 1. 2 x 2 contingency table. Each of n 
items is classified according to two dichotomous 
properties so that the outcome of the whole ex- 
periment may be represented in the form 

x = ((2, 1), (1, 2), ..., (1, 1)). 

The data are summarized in the usual four fold 
table shown in Table 1. 

Put 

t(x) = (nl,, n12, n2l, n22) 

and 

u(x) = u(t(x)) = (nr., n2., n.1, n.2) 

= (nil +nl2, n2l +n22, nil + n2l, nl2 +n22). 

Then 

Table 1 

1 2 Total 

1 nll n12 nl. 
2 n2l n22 n2. 

Total n.I n.2 n.. = n 

f(t) ___ _ 

nil! n12' n2l! n22' 

and 

n! n! 

nl.!n2.! n.1! n.2! 

The hypothesis that t(x) can be reduced to u(x)= 
u(t(x)) is the usual hypothesis of independence. It 
is rejected by the exact test if the hypergeometric 
probability 

f(t) n,.!n2.!n.1!n.2! 1 
g(u) n! nil! n12! n2,! n22! 

is too small. 
For Lange's data concerning the criminality among 

the twin brothers or sisters of criminals reproduced 
in Table 2 taken from Fisher (1934), we get the 
values of f(t)/g(u) shown in Table 3 so that the 
critical level becomes 

13! 18! 
e(t) = 308! . (1 + 102 + 476 + 2992) = 0.00054 

which is slightly larger than Fisher's value since he 
neglected the term corresponding to nil = 0. The 
corresponding microcanonical redundancy is 

R(t) =_-g(t) = 0.20. 
log g(u) 

Table 2 

Convicted Not convicted Total 

Monozygotic 10 3 13 
Dizygotic 2 15 17 

Total 12 18 30 

Table 3 

nil 0 1 ... 10 11 12 

fg(t)130! 8! 476 12376 ... 2992 102 1 
g(u) 13! 18!. 
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Canonical redundancy 

We shall now assume that the statistic t(x) takes its 
values in Zr and that the sum 

q(a) =- ea t(x) ea, f(t) 
- t 

converges in the neighbourhood of at least some 
point a in R'. The parameter space A ' Rr is defined 
to be the largest open set on which the sum con- 
verges. The function p(a), which is the Laplace 
transform of f(t), is called the canonical partition 
function. It is positive and analytic on A. For a in 
A, the canonical distribution of x is defined by 

I ea-t(x) 
Pa(~XJ 

=v(a) 

The induced canonical distribution of t(x) is then 
clearly 

pa(t) =- ea,t1 
p(a) 

and the first two moments of t(x) are given by 

m(a) = Ea(t) = grad log qp(a) 

and 

V(a) = Vara(t)= (a' 
lg /) 

Like any variance matrix, V(a) is positive definite, 
and it is strictly positive definite if and only if the 
range of t(x) or, what amounts to the same, the 
support of f(t) is not contained in a coset of a sub- 
group of Zr of lower dimension. Note that this is a 
condition which does not depend on a. By replac- 
ing t(x) by t(x) - to and diminishing r, if necessary, 
we can and shall in the following assume that this 
condition is fullfilled. It implies no restriction of 
generality, because the passage from t(x) to t(x) -to 
and the decrease of r does not alter the induced 
partitioning of the sample space. 

The function log p(a) is analytic and, under the 
assumption just made, strictly convex. Therefore 
grad log q(a) is one-to-one and analytic and has an 
inverse d(t) which is defined and analytic on the 
image of A under grad log p(a). d(x) = d(t(x)) is the 
maximum likelihood estimate of the parameter a, be- 
cause 

log pa(x) = a * t(x) - log q(a) 

is a strictly concave function of a which assumes its 
unique maximum when 

t(x) = grad log 9(a) 

provided t(x) belongs to the range of grad log 9p(a). 
The canonical or Gibbs entropy is the quantity 

H(a) = Ea( - log Pa(X)) = log q'(a) - a * m(a). 

Using it, we obtain the following simple expression 
for the attained maximum value of the likelihood, 

max pa(x) = ed(t(x)) t(x) =- e- H(d(t(x))) 

assuming, of course, that x is such that t(x) belongs 
to the domain of d(t). 

We shall now turn to the problem of testing a 
reductive hypothesis of the form 

t(x) can be reduced to u(x) = u(t(x)) 

where u(t) is a homomorphism from Zr to Z-' with 
p <r. Since a subgroup of a finitely generated free 
abelian group is again free and has at most as many 
generators (see Lang, 1965, p. 45), we can assume 
that the homomorphism u(t) is actually onto ZP. 
But then, after a change of basis in Zr, if necessary, 
we can write 

zr = ZP X Z", 

where q = r -p is the number of degrees of freedom 
of the reduction, 

t = (u, v) 

and assume that the homomorphism u(t) is simply 
the associated left projection (again, see Lang, 
1965, p. 44). 

Partition the parameter vector a = (b, c) in the 
same way as t = (u, v) so that a * t = b - u + c * v, and as- 
sume that the parameter space A contains at least 
one point of the form (b, 0). Then the canonical 
distribution associated with the statistic u(x) exists, 

Pb(X) = (b) ebu() 

where 

ip(b) = , e' u(x) = 2 eb- u(x)+O. v(x) = p(b, 0), 
x 

and is obtained from the canonical distribution as- 
sociated with t(x) by putting c = 0. Hence the as- 
sociated parameter space B consists of all those 
values of b for which (b, 0) belongs to A. The con- 
dition 

c =0 
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The notion of redundancy 7 

will be referred to as the parametric specification of 
the hypothesis that t(x) can be reduced to u(x)= 
u(t(x)). 

The canonical redundancy is defined by 

R(a = -H(a) 
R(a) 1l -H(b(a), 0) 

where b(a) is the solution of the equation 

P(m(b(a), 0)) = P(m(a)). 

Here P denotes the left projection from RP x R" to 
R'. If we compare this equation with the maximum 
likelihood equation for b under the hypothesis c = 0, 

u = grad log tp(b) = grad log p(b, 0) = P(m(b, 0)), 

we see that 

b(a) = b(P(m(a))). 

The domain of R(a) equals the domain of b(a) and 
consists of all values of a in A for which P(m(a)) 
belongs to the domain of b(u). It is an open subset 
of A which contains all points in A of the form 
(b, 0), because, if a = (b, 0), then b(a) is clearly de- 
fined and equal to b. 

Whenever defined, R(a) satisfies the inequality 

O s R(a) < 1, 

and, furthermore, 

R(b, c) = 0 if and only if c = 0. 

To see this, suppose that t and u belong to the do- 
mains of d(t) and b(u), respectively, where t = (u, v). 
Then 

H(d(t)) = min (log p(a) - a * t) 
a 

s min (log q7(b, 0) - b * u) = H(b(u), 0). 
b 

Now, a belongs to the domain of R(a) if and only 
if both m(a) and P(m(a)) belong to the domains of 
d(t) and b(u), respectively. Hence we can put t= 
m(a) in the above inequality, use the fact that 
d(m(a)) = a, and conclude 

H(a) < H(b(a), O), 

that is, 

R(a) > 0. 

Since log p(a) - a* t is a strictly convex function of 
a under the assumption that the structure function 
f(t) is not concentrated on a coset of a subgroup of 

Table 4 

1 2 Total 

1 Pit P12 P 
2 P21 P22 P2. 

Total P.1 P-2 p.. 

lower dimension, equality holds if and only if a is 
of the form (b, 0). Finally, the inequality 

R(a) < 1 

follows immediately from the fact that, under the 
assumption about the support of the structure func- 
tion, the distribution Pa(X) is non degenerate so that 
its entropy satisfies 

H(a) > 0. 

The canonical redundancy R(a) is a measure of 
the deviation of the parameter vector a = (b, c) from 
the hypothesis c = 0. Its relation to the microca- 
nonical redundancy will be established in the next 
section. 

Example I (continued). For a 2 x 2 contingency 
table with probabilities as indicated in Table 4, the 
canonical redundancy with respect to the hypothesis 
of independence pu =p. p. j becomes 

1 H(pl, P12' P21, P22) 
H(p1., P2.) + H(p.1, P.2) 

where 
n 

H(p1, * * Pn)=-2 Pi log Pi. 

Example 2. Multinomial distribution. The ca- 
nonical redundancy with respect to the hypothesis 
that all the multinomial probabilities are equal, 

Pi =P2 -=Pn=n n 

becomes 

H(pj9 .. I Pn) 
logn 

which is the redundancy as defined by Shannon 
(1948). 

The likelihood ratio with respect to the hypo- 
thesis c = 0 is by definition 

maxpb, o(x) 
A(x) =A~l(t(x)) = b = eH(d(t(x))) - (b(u(G)). 0) 

maxpa(x) 
a 
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assuming of course that t(x) and u(x) belong to the 
domains of d(t) and b(u), respectively. It allows us 
to give the following simple expression for the value 
of the canonical redundancy R(a) for the argument 
a =a'(t), 

R(d(t)) = 1 H(d(t)) log A(t) 
H(b(u), 0) H(b(u), 0) 

Thus R(d(t)) is -log A(t) normalized by dividing by 
the entropy H(b(u), 0). Taylor expansion of log A(t) 
= log A(u, v) in v around the point v = Q(m(b(u), 0)), 

where Q denotes the right projection from RP+ to 
RI, yields 

log A(t) =- + terms of third and higher order 
2 

where, using matrix notation and putting for brev- 
ity b = b(u), 

X2 = (t - m(b, 0))' V(b, 0)-1(t - m(b, 0)) 

= (v - Qm(b, O))'QV(b, O)-1Q'(v - Qm(b, 0)). 

Hence 

R(a_t_X8___ 
terms of third and higher 

R(a(t)) 
= 

2H((u), 0) + order 

which is a convenient formula to use for approxi- 
mate computation of the redundancy when the value 
of X2 is either known or easier to compute than 
H(d(t)). 

If the structure function f(t) is chosen in a patho- 
logical way, it can actually happen that the canon- 
ical redundancy R(a) is defined only on a proper 
part of the parameter space A. The following ex- 
ample is due to Thomas H6glund. Take p = q =1 
and put 

e 3] 
if v<u and v=O or 1, 

f(t) =A U, V) = (u-v 

O otherwise. 

Then 

q(a) = p(b, c) = eu+f(u, v) 
U, V 

= 2 $ ebu (l?e b+c) 
(U=1 [u] ) 

and the parameter space A is the half plane deter- 
mined by the inequalities b < -1 an id - oo < c < + oo. 
The range of 

P(m(b, 0)) a log 97(b, 0) 
ab 

is the open interval from - oo to 

00 eU 

u -l 3 ue- 
8 

U=[lje + e1 u00 eu e +l 

whereas the range of 

P(m(a)) = 
alog(b,c) 

is the open interval from -oo to 

00 eu 

U=1 U1 

the right end point being approached when b and c 
tend to - 1 and + oo, respectively. Hence there is 
no solution b(a) to the equation 

P(m(b(a), 0)) = P(m(a)) 

when the components b and c of the parameter 
vector a = (b, c) are sufficiently close to -1 and 
+ 00. 

All exponential families that occur in practice turn 
out to be such that the range of m(a) = grad log p(a), 
which is always contained in the interior of the 
convex support of f(t), actually equals it. As shown 
by Barndorff-Nielsen (1970), this is equivalent to 
log p(a) being steep in his terminology. Now, sup- 
pose that the family of canonical distributions de- 
termined by u(x) satisfies this regularity condition, 
that is, that b(u) is defined on the whole of the in- 
terior of the convex support of g(u) or, what amounts 
to the same, that log ip(b) = log q(b, 0) is steep (which, 
in turn, is guaranteed by log 9p(a) being steep). Then 
R(a) is defined on the whole of A, because for an 
arbitrary choice of a in A, 

m(a) belongs to the interior of the convex support 
of f(t) 

which implies that 

P(m(a)) belongs to the interior of the convex sup- 
port of g(u) 

which, in turn, implies that 

b(a) = b(P(m(a))) is defined. 

This argument, which is due to Ole Barndorff- 
Nielsen, shows that a counterexample such as that 
of Hoglund has to be pathological. 
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Approximation theorem 

In this section, we shall see that, in the case of a 
large number of independent repetitions of one and 
the same experiment, the microcanonical redun- 
dancy may be approximated by the canonical re- 
dundancy evaluated for the maximum likelihood 
estimate of the parameter. 

Consider a sequence of sample spaces 

X, =X,=Xx... xX 

n 

and statistics 

n 

tn(xil .. ., Xn)= t() 

where, as before, t(x) takes its values in Zr. Then, 
with obvious notation, 

fn(t) = fn*(t), ,,n(a) = 99(a)n 

mn(a) = n * m(a), Vn(a) = n * V(a), 

Hn(a) = n *H(a), dn(t) = d(t/n). 

On the other hand, the parameter space A is the 
same regardless of the value of n. 

Assume that the support of the structure function 
f(t) is not contained in a coset of a proper subgroup 
of Zr. Note that this condition is stronger than the 
previous condition that the support of f(t) not be 
contained in a coset of a subgroup of lower dimen- 
sion, which is equivalent to V(a) being strictly po- 
sitive definite. However, it clearly implies as little 
restriction of generality. Under the stronger as- 
sumption, we have the following saddle point ap- 
proximation of the structure function, 

en H(d(t n))1 

fn(t) = en((l 1 + 0(! as n-+>oo 
(2an) r2 Vdet V(a(t/n)) 

uniformly as long as d(t/n) stays within a fixed com- 
pact subset of the parameter space A. For a proof, 
see Martin-Lof (1970). 

We shall be concerned with a reductive hypo- 
thesis of the form 

tn(xi, ..., xn) can be reduced to u(tn(xv, ..., xn)) 
n 

= 7 u(t(Xi)) 
f=1 

where u(t) is a homomorphism from Zr -ZP+ onto 
Z- which we may assume to be simply the left pro- 
jection. The parametric specification of the hypo- 
thesis is then c = 0, assuming of course that the para- 

meter space A contains at least one point of the form 
(b, 0). Let Rj(t) denote the microcanonical redun- 
dancy with respect to this hypothesis and Rj(a) 
R(a) the corresponding canonical redundancy. 

Theorem. As n - oo, 

Rn(t) = R(d(t/n)) + ? ( n ) 

uniformly when d(t/n) stays within a fixed compact 
subset of the domain of R(a). 

Proof. By definition, 

log M fn(u, v') 

Rn(t) = RJ(u, V) = 1 fn(u. V')?fn(u, v) 
log gn(u) 

The inequality 

Mnu, v) 6< Y_ Mu(a v' 
fn(u , V') <fn(u , v) 

6fj(u, v) (no. of v's such that fn(u, v)$0) 

is trivial. The saddle point approximation gives 

log fn(t) = nH(d(t/n)) + O(log n) 

and 

log gn(u) = nH(b(u/n), 0) + O(log n) 

as n - oo uniformly when d(t/n) and b(u/n) belong 
to compact subsets of A and B, respectively. Hence 
both of these asymptotic relations hold when d(t/n) 
stays within a compact subset of the domain of R(a). 
It remains to estimate the size of the support of 
fn(u, v) regarded as a function of v. By assumption, 
the parameter space A contains at least one point 
of the form (b, 0). But then, being open, it contains 
all of the 2q points (b, ej) and (b, -ej) for j = 1, ..., q 
where 

e; = (O, .., 0 .. ) 

jth place 

provided e is a sufficiently small positive number. 
The trivial inequality 

f.(u, v).ebu+c 
v < q9(b, c)n 

implies that, if fn(u, v) *0, then 

eb u+c v < go, c)n 

Applying this to c = ej and - ej, we can conclude 
that, if fn(u, v) +0, then 
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10 Per Martin-Lof 

Table 5 

Redundancy Fit p 

1 Worst possible 0.000 1.000 
0.1 Very bad 0.316 0.684 
0.01 Bad 0.441 0.559 
0.001 Good 0.482 0.518 
0.0001 Very good 0.494 0.506 

- - (log qp(b, - *) - b n < vi (log 99(b, e) - b - 

for j = 1, ..., q where v = (v1, ...,vq). Hence the num- 
ber of points in the support of f(u, v) regarded as 
a function of v is O(nQ) provided u/n is bounded as 
it is if b(u/n) belongs to a compact subset of B which, 
in turn, is guaranteed by the assumption that a(t/n) 
belongs to a compact subset of the domain of R(a). 
Summing up, 

H(d(t/n)) Olog n 
Rn(t) = 1 +01 

H(b(u/n), 0) n/ 

as was to be proved. 
That the error term is best possible can be seen 

by considering the hypothesis that a binomial prob- 
ability p = 1/2, because then 

Rn(t)= 1 --log,2 ( , 
nl t 

R(p) = 1 -( -p 1og2 p -(1 -p) log2 (1 -p)), 

and a simple calculation shows that RJ(t) - R(t/n) = 

log2 n/2n + 0(1/n) when tln is bounded away from 
0, 1/2 and 1. 

Example I (continued). For Lange's data, the 
canonical redundancy computed for the maximum 
likelihood estimates of the parameters equals 0.17 
which should be compared with the value of the 
microcanonical redundancy which was found earlier 
to be 0.20. Thus the agreement is good even in this 
rather unfavourable case, especially as we shall 
only be interested in the order of magnitude of the 
redundancy. 

Calibration of the redundancy scale 

The redundancy enables us to measure quantita- 
tively the discrepancy between a statistical hypo- 
thesis and a given set of data on an absolute scale. 
That is, whatever model and reductive hypothesis 
we consider, the interpretation of the redundancy is 
the same: it is the relative decrease in the number of 

binary units needed to specify the given set of data 
when we take into account the regularities that we 
detect by means of the exact test.. Being the relative 
decrease of something, the redundancy takes its 
values in the closed unit interval. 

We shall now turn to the problem of giving a 
qualitative interpretation of the various quantita- 
tive values of the redundancy. This is a problem which 
is similar in nature to the problemri of where to write 
very cold, cold, cool, mild, warm, hot, etc. along an 
ordinary thermometer scale. In both cases, the solu- 
tion has to be found through case studies. Table 5 
contains for certain values of the redundancy, which 
are taken to be negative powers of ten, my proposed 
qualitative interpretation and also, in the last col- 
umn, the values of a binomial probability p that 
produce the redundancy in question with respect 
to the hypothesis p = 1/2. Thus the last column is a 
table of the inverse of the function 

R(p) = 1 - ( -p 1og2 p - (1 -p) log2 (1 -p)). 

The qualitative scale is admittedly tentative and 
needs to be corroborated by further case studies, 
but it is not as arbitrary as it may seem. So much 
is clear already from the few examples considered 
below, that it would be too liberal to admit a re- 
dundancy of 0.01 as good and that, in the other di- 
rection, if only redundancies of at most 0.0001 were 
accepted as good, then statistical inference for large 
data sets would become almost wholly impossible. 
That is, we would be able to fit statistical models 
only to very exceptional kinds of data, obtained, 
say, by coin tossing, die casting or observing a 
randomizing machine. 

Example 2 (continued). Consider an English text 
without spaces and punctuation marks. If the text is 
long, consisting of 10000 letters, say, we obtain 
for the redundancy with respect to the hypothesis 
of complete randomness 

1 P log Pa.. -) log p 1- Pa P---PZ Z=0.12 
log 26 

where Pa, ...,zP are the relative frequencies of the 
letters a, ..., z. This corresponds to a very bad fit 
on the proposed qualitative scale. 

Example 3. Out of 88 273 children born in Sweden 
in 1935, 45 682 were boys (see Cramer, 1945). The 
relative frequency of boys equals 0.5175 and differs 
of course highly significantly from 0.5. However, 
the redundancy with respect to the hypothesis of 
equal probabilities for boys and girls is only 0.0009 
which corresponds to the value good on the qualita- 
tive scale. 

Example 4. Test of independence in a 4 x 5 con- 
tingency table showing the distribution of 25 263 

Scand J Statist I 



The notion of redundancy 11 

married couples according to annual income and 
number of children (see Cramer, 1945) gives x2 = 

568.5 for 12 degrees of freedom, indicating a highly 
significant deviation. The corresponding redun- 
dancy, obtained by dividing the mean square con- 
tingency by twice the sum of the entropies of the 
marginal distributions, equals 0.005 which is a bit 
higher than one would be willing to accept. 

Example 5. The distribution of the head hair and 
eyebrow colours (light or red versus dark or medium) 
of 46 542 Swedish conscripts is shown in a 2 x 2 con- 
tingency table in Cramer (1945). X2 = 19 288 for 1 
degree of freedom so that the deviation is highly 
significant. The corresponding redundancy is 0.17 
indicating a very high degree pf association. 

Example 6. Weldon's dice data (see Fisher, 1925). 
12 dice were thrown 26 306 times and, in each throw, 
the number of dice scoring 5 or 6 was recorded. Let 
pi denote the probability of exactly i dice scoring 
5 or 6. The first hypothesis is that 

Pi(2 Pi(l _p)12-, i=0, 1, ..., 12, 

for some p, giving x2 = 13.2 for 11 degrees of free- 
dom. Thus there is no significant deviation and no 
need to compute the redundancy. With respect to 
the second hypothesis, namely, that the dice are true, 

p=1/3 

we get X2 =27.1 for 1 degree of freedom which is 
highly significant. The corresponding redundancy is 
nevertheless as small as 

27.1 
2 - 26306 12. log,6 = 0.000024 

which falls well below the value corresponding to a 
very good fit on the proposed redundancy scale. 
The relative frequency of dice scoring 5 or 6 equals 
0.3377 and is hence very close to 0.3333 ... 

Example 7. Testing independence of sex and hair 
colour in the 2 x 5 contingency table reproduced by 
Fisher (1925) (Tocher's data) gives X2 10.48 for 4 
degrees of freedom which corresponds to a critical 
level between 0.02 and 0.05 (almost significance in 
Cramer's terminology). The number of observations 
is 3 883 and this makes the redundancy as low as 
0.0007 which corresponds to a good fit on the 
qualitative scale. 

Example 8. Traffic accidents. Let the index i 
range over the years 1961, ..., 1966, the index i over 
92 consecutive days from the end of May till the 
end of August and the index k over the speed limits 
90 km/hr, 100 km/hr and free speed that were tried 

in Sweden during the period in question. Assume 
that the number of accidents involving injured people 
and reported by the police year i and day j follows 
a Poisson distribution with mean value Aij and that 
the different accident numbers are independent. The 
test of the hypothesis 

AiJ = ai fjkij, 

where kij is the speed limit year i and day j, gives 
for the Swedish accident data (see Jonrup & 
Svensson, 1971) X2= 565 with 446 degrees of free- 
dom, indicating a highly significant deviation from 
the hypothesis. The corresponding redundancy equals 
0.0038 and falls between good and bad on the pro- 
posed qualitative scale. Also, the test of the hypo- 
thesis that there are no effects of the speed limits, 

flik = f 

yields X2 = 85 for 9 degrees of freedom which is 
again highly significant, but the redundancy is now 
only 0.0006. Thus the effects of the speed limits are 
almost drowned by the bad fit of the model. 

Example 9. Wilson's model. The Stockholm re- 
gion has been divided into 41 districts and for each 
of 407 063 persons living and working in the region 
has it been recorded in which district the person lives 
and in which district he works. Thus the data (from 
Marksjo, 1970) appear in the form of a quadratic 
contingency table. Let Pi0 be the probability that a 
person lives in district i and works in district j, and 
assume the different persons to be independent. 
The hypothesis to be tested is that 

Pti = %iAflyCij 

where cij is the cost of transportation from district 
i to district j. This model has been proposed by 
Wilson (1967). For his data, Marksjo obtained x2/ 
degrees of freedom = 16.4 which is of course highly 
significant. However, because of the very large 
number of observations, the redundancy is still as 
low as 0.0041, a value which falls between good and 
bad on the proposed qualitative scale and cor- 
responds to a deviation of a binomial probability 
from 0.5 by the amount 0.04. On the other hand, the 
hypothesis 

y = I 

of no sensitivity to the cost of transportation leads 
to the redundancy 0.024 which is six times as high 
and worse than bad on the qualitative scale. 

Critical size of an experiment 

The following procedure for testing a (reductive) 
statistical hypothesis is suggested. To begin with, 
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compute the critical level R(t). If e(t) > e, where e is 
the level of significance, we accept the hypothesis. 
If 6(t) ?6, we compute in addition the (microcano- 
nical) redundancy 

RO log 6(t) 

R()=log g(u) 

and check whether R(t) < e or R(t) > e where e is the 
limnit of the redundancies that we are willing to 
tolerate. If R(t) <n, we accept the model although 
the observed deviation is significant because we 
think that it nevertheless describes the data with 
sufficient accuracy. Finally, if 6(t) ?6e and R(t) >Lo 
we reject the model because the observed deviation is 
both significant and unacceptably large. 

To be sure that an unacceptably large value of the 
redundancy is significant, that is, has probability 

?6,. the experiment has to be so big that 

g(u)> (I- 

or, equivalently, 

log g(u) >- log-. 
e 6 

Indeed, the inequality R(t) > e is equivalent to 
6(t) <g(u)-e and, to be sure that the probability of 
this event is < , we have to have g(u)-Q < e which is 
equivalent to the inequality above. Note that the 
expression (lIQ) log (1/e) is much more sensitive to 
changes in e than changes in 6. 

In the special case of n independent repetitions of 
one and the same experiment, the saddle point ap- 
proximation gives 

log g.(u) = nH(b(u/n), 0) + O(log n) 

uniformly when b(u/n) stays within a compact sub- 
set of B. Neglecting the error term, the above in- 
equality is then transformed into ithe inequality 

1 1 
n > ~~ og - 
QH(b(uln), O) E 

which allows us to determine the number of observa- 
tions that we have to make in order to be sure that 
an observed redundancy > e is significant. See Fig. 1. 

Example 10. Suppose that we want to test whether 
a coin can be regarded as ideal by tossing it n times. 
Then gj(u) = 2' so that the above inequality specia- 
lizes to 

1 1 
n > - 

1 
log-. 

plog2 e 

In particular, for E =0.01 and e = 0.001 we get n > 
6 644 which is roughly the number of times that 
we have to toss the coin in order to be able to de- 
tect substantial deviations from the hypothesis of 
equal probabilities for head and tail. 
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DISCUSSION 

The previous paper was presented at the Conference 
on Foundational Questions in Statistical Inference, 
held at the Department of Theoretical Statistics, 
Aarhus University, May 7-12, 1973. After the pres- 
entation of the paper, the following discussion took 
place. 

F. Abildgard (Copenhagen; specially invited contri- 
bution): I think that is is wellknown to everybody 
that testing in large sets of data almost always pro- 
vides significant deviations from the hypothesis, 
whether this is a model or e.g. some sort of homo- 
geneity. In any case this is wellknown from the lit- 
erature and to those doing practice it is also well- 
known from their daily life. The question to be dis- 
cussed here is which conclusions should be drawn 
from this experience. 

It is clear from the paper and the lecture we have 
just heard what is Martin-Lof's conclusion. This is 
already stated on page 3 in the paper: "In such 
cases we need instead (of the classical tests) a quan- 
titative measure of the size of the discrepancy be- 
tween the statistical model and the observed set of 
data which will allow us to decide whether this dis- 
crepancy, although highly significant, that is, not 
attributable to chance, is nevertheless so small that 
the model must be considered as providing a satis- 
factory approximate description of the data." 

Martin-Lof's answer to this need is the measure of 
redundancy we have now heard about. This pro- 
posal may be evaluated from different points of 
view. As far as I am able to follow the mathema- 
tics I enjoy it very much as a stimulating contribu- 
tion to the theory of statistics. At the same time the 
exposition is at such a level of clarity that I find it 
difficult to point out problems for discussion on 
the purely technical or mathematical aspect of the 
paper. 

But there is another aspect of the idea of testing 
on the basis of the measure of redundancy which 
should be scrutinized, namely the results which come 
out. Let us to this end regard e.g. Example 4 in the 
paper: The data concern the distribution of mar- 
ried couples according to number of children in 
different income groups, and Karl Pearson's clas- 
sical X2-test yields a highly significant deviation be- 
tween these distributions. On the other hand the 
redundancy "equals 0.005 which is a bit higher than 
one would be willing to accept". I looked up the 
reference in Cramer's book, and found Table 1. 

Inspection of the relative distributions in Table 1 
reveals an obvious, systematic trend towards fewer 
children in families with high income. I had the 
impression that this example was meant as an il- 

Table 1 

Income, Sw. kr. x 10-3 
No. of 
children 0-1 1-2 2-3 3- 

0 35 33 42 54 
1 45 47 43 35 
2 15 16 12 10 
3 4 4 2 1 

> 4 1 1 1 1 

E 100 101 100 101 

n 6 116 10 928 5 173 3 046 

lustration of an unjustified significance caused by a 
large n. I think the example is better suited to il- 
lustrate the claim that one should study the struc- 
ture of the data before putting model reducing hypo- 
theses forward for testing. 

Of course there are many situations where one 
feels that the deviation between the model and the 
data even if it is highly significant is statistically ir- 
relevant and only causes trouble. Let us consider 
another example. It is wellknown from statistical 
textbooks how one can test the linearity of the re- 
gression of X on z by means of the statistic 

F 
2 

2' 
Si 

2 1 
S1 n. - k i; 

52 =k ni(Xs . - a - bzi)'. 2k-2i 

Under Ho: $i = a + flzi F will follow the F-distribu- 
tion. It is also wellknown to everybody in this 
audience that this test has nothing at all to do with 
linearity. So it is easy to construct examples where a 
perfect linearity leads to highly significant F-sta- 
tistics, namely by decreasing s2. It is also easy to 
construct examples to the opposite effect e.g. with 
clearly curved mean structure but with sL suffi- 
ciently large. 

I have the impression that the first one of these 
two possibilities in principle is of the same nature 
as, and even may be considered as a generalization 
of the problem with large sets of data dealt with by 
Martin-Lof. The essential problem is that the "pre- 
cision" of the data may be too high compared to the 
precision with which the data fit the model. Some- 
times this damagingly high precision is provided by 
means of a large set of observations. What do we do 
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with this problem in the regression case. The usual 
way to remedy the bad fit is by introducing a model 
of iterated sampling. In this house this is called the 
JOK-principle. The idea is that you have a model 
until you choose a new one. Here you choose a new 
model in which the $'s are considered stochastic 
with their own variance. This is a generally accepted 
approach and it may well be worth-while to consider 
its use also in the cases discussed by Martin-Lof. 

One may ask why one shall choose a new model 
e.g. in the regression example above. Of course not 
for the purpose of describing the data. They are al- 
ready satisfactorily described by the graphical dis- 
play of the observations. This is a perfect reduction 
of the data. One may, however, be interested in test- 
ing a certain position of the regression line or in 
comparing two regression lines. In these cases one 
needs a model that fits and may use a model with 
iterated sampling. What is said by this is merely 
that the methods of theoretical statistics do not 
provide tools that are suitable for discovering the 
structure and essential features of the data. Their 
application lies in two other functions. 

The first is that statistical models sometimes may 
be used for obtaining a more comprehensive picture 
of the structure of the data than can be obtained 
by other means. The second function is that the ap- 
propriate application of statistical methods may 
safeguard against overinterpreting the tendencies of 
the data. In vulgar language one may say that the 
statistical methods tell whether or not this or that 
feature of the data is likely to reproduce if the ob- 
servation is repeated. 

The next question is why I seem to prefer the ap- 
plication of e.g. models with iterated sampling to 
inference of Martin-Lbf's type when describing data 
and testing. First of all I must admit, referring to a 
remark on page 5 in the paper, that it actually is 
astonishing to me "that for large sets of data ... it 
will only very exceptionally be the case that -log2 
e(t(x)) < 10" if you have a serious belief in the model 
on trial. 

But there is also another thing, namely that I 
still seem to retain some sentimental feelings for 
classical significance testing. I think these are close- 
ly related to the second of the two above-men- 
tioned functions of statistics: the distinction between 
those features of the data which should be con- 
sidered incidental and those which one would bet 
will occur again if the experiment is repeated, even 
if factors not entering into the structure are changed. 
My feeling is that this purpose is in some way or 
another much better achieved by means of classical 
testing procedures than e.g. by means of Martin- 
Lof's method based on the redundancy measure. 

I happen to have some experience from work in 

two of the fields mentioned in Martin-L6f's exam- 
ples: traffic accidents under speed limits (Example 8) 
and traffic modelling (Example 9). In both cases I 
got the same result as Martin-Lof: an extremely 
bad fit with the first model I tried. In both cases I 
drew the conclusion that the data contained some- 
thing not contained in the model, and that this 
something had something to do with inhomogenei- 
ties, and that the apparent struc:ture might be in- 
fluenced by factors not controlled by the data, so 
that I really would hesitate to bet even one penny 
on the reliability or reproductiveness of this struc- 
ture. Consequently I started to search for factors 
generating such inhomogeneities. This work is not 
yet finished but it has up till now in both cases re- 
sulted in the discovery of a factor which seems to 
be of importance for the description of the data. In 
the traffic accident case one obtains a highly im- 
proved fit by means of splitting the accidents ac- 
cording to part-combinations (e.g. single driver's 
accidents, collissions between two drivers in cross- 
roads). In the traffic model example the trick seems 
to be to split the total frequency matrix according 
to different categories of travellers, e.g. according 
to trade, appointment, and income. 

The main trait in the argument here, however, is 
not how to split or according to what, but the idea 
that if you, by means of splitting the data and there- 
by in some sense making the model more detailed 
and complex, have obtained a satisfactory fit in 
classical terms, you feel that you have finished the 
description and got to the bottom of the data. 

In cases where one is prevented from tracing the 
fundamental structure in this way e.g. due to certain 
limitations in the data the question arises whether 
to use Martin-Lof's redundancy measure, models 
with iterated sampling, or simply to abstain from 
reducing the data and drawing further conclusions. 
One reason for preferring the last possibility is that 
the uncontrolled factors producing inhomogenei- 
ties may act in the data in such. a way that they 
guide your conclusions in a way you are unable to 
observe. 

Even if I in principle agree with the idea that the 
proposed qualitative scale for the evaluation of the 
redundancy measure (cf. p. 10) as well as the entire 
idea of using such a measure in statistical inference 
need to be corroborated by further case studies, it 
is not at all clear to me what this means in practice 
and I am afraid that I see problems in this, possibly 
even more than the author does. 'For the moment I 
shall consider a bad fit as indicating that one has 
not finished the investigation and the research work 
must proceed. And that you must be most hesitat- 
ing and make all reservations when drawing con- 
clusions. 
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(These considerations also seem to apply to the 
social sciences.) 

A. P. Dempster (Harvard University): Martin-Lof 
has shown in detail how the results of traditional 
tail area testing at a fixed size s diverge from the 
results of redundancy testing at a fixed level e as 
sample size increases, suggesting that the latter may 
sometimes be more reasonable with large data sets 
when tail area tests are almost certain to reject. 
Another kind of test which is known to accept much 
more often in large samples than does the traditio- 
nal test is the straightforward Bayesian procedure 
which rejects where the posterior probability of the 
null hypothesis is less than some small value 6. 
This procedure requires specification of prior prob- 
abilities of null and alternative hypotheses, and 
genuine prior densities over the parameters within 
the null and alternative hypotheses. I wish to ask 
Martin-Lof: what is the relative behaviour as sample 
size increases of redundancy testing and Bayesian 
testing with fixed prior distribution? Or, put dif- 
ferently, how must the Bayesian let his prior distri- 
bution change as sample size increases in order to 
reproduce the results of redundancy testing? 

D. Basu (Indian Statistical Institute): That classical 
null-hypothesis testings and Bayesianism do not go 
well together is seen from the following simple ex- 
ample. For further comments on this see section 11 
of my essay on likelihood. 

Suppose n independent observations on a vari- 
able X - N(O, 1) with the null-hypothesis Ho =Hyp 
(0 = 0) yield the 'highly significant' mean observa- 
tion X(=) 3/. With a uniform prior for 0 over a 
reasonable interval around the origin, a Bayesian 
will then work out the posterior distribution for 0 
as N(3/IFi, 1/IIG). (A fiducialist or structural prob- 
abilist will arrive at the same distribution for 0.) If 
we denote by H* the composite hypothesis -1/ 
10<0 <1/10, then a Bayesian will work out the 
posterior probability of Ho as 

Pr ( - - 3 <N(0, 1)<nlo- 3) \10 10 / 

Note that the above is less than 0.025 if n = 100 but 
is greater than 0.999 if n = 10 000. 

D. R. Cox (Imperial College): (i) Significant 're- 
jection' of a null hypothesis means that the data 
are inconsistent with that hypothesis and provide 
evidence of the direction of departure. This is quite 
a different issue from whether to procede with the 
hypothesis, for which consideration of the practical 

importance of the magnitude of departures is nor- 
mally required; Newton's law of gravitation is an 
often-quoted example. The present very interesting 
paper provides a measure of importance of depar- 
tures that does not involve considerations outside 
the null hypothesis itself. A crucial question is 
whether such external considerations can really be 
avoided. 

(ii) Following Professor Barnard, significance 
tests can be classified according as they 

(a) involve explicit probabilistically formulated 
alternatives, as in Neyman-Pearson theory; 

(b) are "simple" tests, in which a test statistic is 
defined measuring departures from the null hypo- 
thesis, and the tail area of its null hypothesis distri- 
bution calculated; 

(c) are "absolute" tests, in which, as in the pres- 
ent paper the ordinates of the distribution under 
the null hypothesis define the test statistic. 

Is (c) really a viable idea, independently of some 
considerations of type (b)? If, as in some permuta- 
tion tests, the ordinate varies irregularly with a 
"natural" test statistic, would one sum over all 
points with small ordinates? 

(iii) The denominator of Dr Martin-Lof's ratio 
seems especially sensitive to the precise definition 
of the data. For example, if x were supplemented 
by binary noise, s would be unaffected, but not R. 

A. W. F. Edwards (Cambridge University): I do not 
myself accept the notion of an absolute measure of 
goodness-of-fit, and therefore I am not worried by 
precisely this problem. However, if one uses a rela- 
tive measure, such as the support or log-likelihood, 
one has a comparable situation in which two hypo- 
theses, hardly distinguishable from one another, 
differ enormously in the support they attract, ow- 
ing to the great size of the data. 

A parallel argument to yours would then say that 
such a small difference between hypotheses should 
not 'matter' because taking the better hypothesis 
makes a relatively negligible contribution to 'ex- 
plaining' the data (in the information-theory sense). 
But surely in science we are frequently concerned 
with such hypotheses, that require extensive experi- 
ments or series of observations to put them to the 
test. For example, atmospheric tides have been 
demonstrated from very long series of barometric 
observations. Your test would dismiss the tides as 
making a negligible contribution to explaining the 
daily variation in atmospheric pressure. But surely 
that was not the point. 

D. A. Sprott (University of Waterloo): Other dis- 
cussants have pointed out the necessity of examin- 
ing the sources and possible reasons for departures 
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of the data, however numerous, from the model, 
particularly in sciences in which reproducible meas- 
urements can be taken under controlled experimen- 
tal conditions. It is interesting in this regard to draw 
attention to a brief, somewhat critical, paper by 
R. A. Fisher (1943) entitled "Note on Dr Berkson's 
criticism of tests of significance". In it he quotes 
Dr Berkson as saying of the results of a genetics 
experiment that the line is as straight as any in bio- 
logy. Fisher states that this attitude, in respect of 
the particular genetics example cited, would have 
precluded finding an important fact. Or, that if the 
deviation could be due to an error in experimental 
technique, this error would never be uncovered, as 
the ignoring of the results of the significance test 
essentially denies the existence of such an error. 

G. A. Barnard (University of Essex): Since everyone 
so far has been critical of Martin-Lbf's proposal, I 
would like to say something in support. The fact 
is, that when we use tests like x2 we are using 
"blunderbuss" procedures which are almost always 
capable of refinement if we take more thought. 
Nonetheless the X2 test remains a very useful tool 
for statisticians who may not be able to give all 
sets of data the individual treatment they ought to 
receive. Similarly the redundancy may be regarded 
as a "blunderbuss" procedure to check against re- 
jection when the model gives fair approximate fit. 

For these reasons I see this procedure as po- 
tentially very useful for social science application, 
though less useful for physicists. 

I wonder whether there could be any "partition- 
ing" of R, to correspond with the partitioning of 

2? 

0. Barndorff-Nielsen (Aarhus University): Tying up 
with some of the previous remarks, and with re- 
gard to the question of what discrepancies to expect 
between model and data for large data sets, I wish 
to draw attention to a paper by Berkson (1966) in 
which he examines the fit to the Poisson hypothesis 
for a series of 10 220 observations of waiting times 
for a-particle emissions. Berkson found excellent 
agreement between the data and the Poisson model 
as judged by usual X2 and dispersion index tests. 

J. D. Kalbfleisch (The State University of New York 
at Buffalo): My remarks are closely related to the 
comments of some of the previous discussants. A 
significance test answers the question "Are the ob- 
served observations significantly different from those 
that are expected under the hypothesis?" where the 
word significantly has a well defined technical mean- 
ing. As such it is reasonable to form an absolute 
calibration of the significance scale. It is certainly 

true, however, that "significant" in its technical 
sense does not necessarily mean "important". This 
paper, it seems to me, is concerned with the more 
difficult problem of assessing when the data indi- 
cate that the departures from the specified model 
are important. But, what is an important departure 
depends critically on the type of model being con- 
sidered and more specifically on the use to be made 
of the model. It would seem, therefore, that any 
calibration of the redundancy scale should depend 
on these factors and specifically on the size of the 
deviations from the proposed model which are 
deemed to be important. 

G. Rasch (University of Copenhagen): Let me first 
put a technical question to the speaker: From the 
approximation on only the exponential family of 
distributions was considered. It certainly offers 
facilities that follow from the additivity of the rele- 
vant statistics, but is that quite clecisive? Are similar 
results available for other types of distributions? 

Next I wish to make it quite explicit, that the 
reason for using both significance and redundancy 
lies in the contention that every model is basically 
wrong, i.e. it is bound to fail, given enough data. 

When you are in the possession of a set of data 
you may then either be in the position that your 
significance test tells you that the model fails, or 
you may not have got enough observations for that 
purpose. In the latter case you cannot yet reject the 
model on statistical grounds--which of course 
should not be construed as mearninrg that you really 
accept it. In the former case you have to realize that 
the model fails-and I have no sympathy for re- 
laxing the significance requirement for the reason 
that the data are substantial enough to show it- 
but that does not mean that the model is too bad 
to be applied in the actual case. 

To take a parallel from elementary physics: A 
"mathematical pendulum" is defined as "a heavy 
point, swinging frictionless in a weightless string in 
vacuum". A contraption like that was never seen; 
thus as a model for the motion of a real pendulum 
it is "unrealistic". Notwithstanding, it works quite 
well for a short time interval, but it begins soon to 
show a systematic decrease of the oscillation angle. 
To the model-a second order differential equation 
-thus requiring an amendment, a friction term is 
added, and now it works perfectly well for a long 
time, even during a few days, until another systematic 
deviation shows. If needed, a further correction, for 
air resistance, say, should be attempted-but as a 
matter of fact, this is not needed, because it has 
worked well enough for the purpose of the geo- 
physicist, which was to measure the gravity con- 
stant ("g") with 7 decimal places! 
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The notion of redundancy 17 

It is exactly at this point Martin-Lof's redundancy 
sets in: the model fails-that being demonstrated 
by some significance test-but does it matter for 
its purposes? 

Taking his cue from Information Theory, Martin- 
Lof uses the redundancy, as there defined, for meas- 
uring the deviation of the model from the data, in 
the sense of determining the relative decrease of the 
amount of information in the data which is caused 
by the departure from the null hypothesis. 

Taken literally, the redundancy as a tool may be 
a rather gross evaluation of the loss suffered by re- 
placing the data by the model. Even if it seems small 
the parts lost may effect some of the use of the model 
quite appreciably. Therefore it may be necessary to 
undertake a careful analysis in order to localise 
the losses and consider what to do about them. 

In this connection I may touch upon Weldons dice 
throwing experiment with a redundancy of 0.000024. 
But what if we on several repetitions found the same 
result and it turned out, that the deviations of the 
observed distributions from the model distributions 
persisted in the same parts of them? 

I do not know of any repetition of the experiment, 
neither of any detailed report on fractions of it as 
they were produced during some years, but I do 
happen to know (see Steffensen, 1923) that in a 
similar case the deviations were taken sufficiently 
seriously by statisticians to attempt fitting them 
with a number of alternative distributions, any par- 
ticular justification of which I do not recall having 
seen. 

Let me end up with the scale of redundancies 
presented by the speaker. It did leave me with the 
notion of new horrors of conventional limits! In 
this connection we may, however, have a chance of 
doing it more rationally by analyzing just which 
sort of damage and how much of it is invoked by 
using the model for specified purposes. 

I do look forward to the contribution of the re- 
dundancy concept to articulating my vague thesis, 
that we should never succumb to the illusion that 
any of our models are correct, but we should cer- 
tainly aim at making them adequate for our purposes 
-the redundancy possibly being a useful measur- 
ing instrument in that connection. 

Author's reply: Dempster asks how the Bayesian 
would have to let his prior distribution change as 
sample size increases in order to reproduce the re- 
sults of redundancy testing. I do not know exactly 
how, but it is clear that the change would have to 
be quite drastic. It would probably be more reason- 
able to ask how he would have to change his 5 in 
order to reproduce the results in question. 

It is true that the definition of the redundancy 

involves no power function considerations, but I 
cannot agree with Cox that it involves no considera- 
tions at all outside the null hypothesis itself. The 
null hypothesis asserts that the data x can be de- 
scribed by the statistic u(x), and we are testing this 
hypothesis against the alternative determined by a 
statistic t(x) through which u(x) factors, so that we 
may write u(x) = u(t(x)). 

Cox also asks if it is a viable idea to let the or- 
dinate of the distribution of t under the null hypo- 
thesis define the test statistic even if this distribu- 
tion varies irregularly. As a typical example, we may 
consider the hypothesis of absence of a trend in a 
permutation xl, ..., xn of the integers 1, ..., n. The 
statistic 

n 

t >j ixi 

has a distribution which, although asymptotically 
normal, varies irregularly for moderate values of n. 
See Fig. 16.1 on p. 398 of Kendall (1943), where it 
is plotted for n = 8. The exact (or, in Cox's termi- 
nology, absolute) test rejects if 

f(t) 
n! 

is too small where f(t) is the number of permuta- 
tions with En ixi = t. In this particular example, 
Cox's question is whether the test statistic f(t)/n! 
might not be unnatural compared with one like 

| n(n 1)2| 
4 

which measures the deviation of t from the mean 
value of its (symmetrical) distribution under the 
null hypothesis. Now, in the extreme case when 
f(t) = 0, the hypothesis should no doubt be rejected 
even if the value of t falls close to the center of its 
distribution under the null hypothesis. And there 
seems to me to be a difference not of substance 
but merely of degree between f(t) actually van- 
ishing and f(t) being very small. Thus I think that 
it is in agreement with intuition that the exact test 
rejects the hypothesis iff(t) is sufficiently small irre- 
spective of the numerical value of t. 

Finally, Cox points out that, if we supplement our 
outcome x by n digits of binary noise, then the 
microcanonical redundancy changes from 

log E(t) log E(t) to - g_u___n_log_ log g(u) log g(u) + n log 2 

2 - 731921 Scand I Statist I 



18 Per Martin-Lof 

and the canonical redundancy from 

H(b(a), 0) - H(a) H(b(a), 0) - H(a) _to 
H(b(a), 0) H(b(a), 0) + n log 2 

Thus the denominator is very sensitive to the pre- 
cise definition of the data. However, this seems to 
be unavoidable for a quantity which, like the re- 
dundancy, attempts to measure the overall dis- 
crepancy between the hypothesis and the observed 
set of data. Indeed, if we supplement the data by 
perfect binary noise, then the overall fit is improved 
and becomes perfect in the limit when the amount 
of noise increases indefinitely. 

The difficulty that Cox points out in his last re- 
mark is more acute in the case of continuous distri- 
butions, for which the choice of the class width is 
to some extent arbitrary. Suppose, for example, that 
xi, ..., xn is a sample from a normal distribution 
with mean value ,u and unknown variance a2 and 
that we want to test the hypothesis It = 0. The en- 
tropy of a discretized normal distribution with re- 
spect to the natural logarithm base equals 

a 
'(I +log 2r) +logh 2 ~~~h 

where h is the class width. Hence the canonical 
redundancy, evaluated for the maximum likelihood 
estimates of the parameters, equals 

16 

j(1 -:. log 2nz) + log h? 
h 

where 

n 1 n 6 = ->2x2 and (X (i-x2 

Again it is the denominator that causes trouble, in 
this case by depending on the class width h. How- 
ever, when h changes from the very large value 60 
to the rather small value 6o/10, the denominator 
changes from 1.4 to 3.7 which means that, for h in 
the specified range, the redundancy becomes deter- 
mined up to a factor three approximately. Since 
one step on my proposed qualitative scale cor- 
responds to a factor ten, this makes the redun- 
dancy quite well-determined for practical purposes 
despite its dependence on the class width, the choice 
of which will probably always remain somewhat 
arbitrary. 

Barnard asks whether there might be a partition- 
ing of the redundancy analogous to the wellknown 

partitioning of x2. Indeed, there is. Consider first a 
reduction from a statistic t1 to t2 and then a sub- 
sequent reduction from t2 to t3. Let the correspond- 
ing canonical redundancies be denoted R12 and R23, 
respectively. Also, let R13 be the canonical redun- 
dancy with respect to the composite reduction from 
t1 to t3. Then it follows immediately from the de- 
finition of the canonical redundancy that 

(1 -R13) = (1 -R12) (1 - R23) 

or 

R13 = R12 +R23 -R12R23, 

the last term being negligible if R12 and R23 are 
both small. Thus, in a sequence of reductions, the 
values of 1 - R multiply. By the approximation 
theorem, the same relation holds approximately 
(though not exactly) for the microcanonical redun- 
dancies. Note that the above relation between the 
redundancies in a chain of reductions implies, in 
particular, that 

R13 > max (R12, R23). 

Hence, if the redundancy in any one of the links of 
a chain of reductions exceeds a critical value e, so 
does the redundancy of the composite reduction. 
Compare this with ordinary significance testing on 
a fixed level s which may very well lead us to re- 
ject the reduction from t1 to t2 or from r2 to t3 but 
accept the composite reduction from t1 to t3. 

Rasch points out that, while the microcanonical 
redundancy is defined quite generally for reductive 
hypotheses, the canonical redundancy is defined and 
the approximation theorem proved for exponential 
families only, and he asks if similar results are 
available for other types of distributions. Not so 
far, but on the other hand the limitation to the ex- 
ponential family (or, equivalently, to additive sta- 
tistics) is only dictated by the fact that it covers most 
applications and is the only class of distributions 
for which the necessary analytical machinery has 
been developed. 
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