forked from cthoma/rpi-si4703
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSi4703_Breakout.cpp
307 lines (251 loc) · 10.7 KB
/
Si4703_Breakout.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
//
// Original work Copyright 09.09.2011 Nathan Seidle (SparkFun)
// Modified work Copyright 11.02.2013 Aaron Weiss (SparkFun)
// Modified work Copyright 13.09.2013 Christoph Thoma
//
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <wiringPi.h>
#include <linux/i2c-dev.h>
#include <sys/ioctl.h>
#include "Si4703_Breakout.h"
Si4703_Breakout::Si4703_Breakout(int resetPin, int sdioPin)
{
_resetPin = resetPin;
_sdioPin = sdioPin;
}
int Si4703_Breakout::powerOn()
{
return si4703_init();
}
void Si4703_Breakout::powerOff()
{
return si4703_exit();
}
void Si4703_Breakout::setChannel(int channel)
{
//Freq(MHz) = 0.200(in USA) * Channel + 87.5MHz
//97.3 = 0.2 * Chan + 87.5
//9.8 / 0.2 = 49
int newChannel = channel; // do not increment for more ability to tune it.
newChannel -= 8750; //9730 - 8750 = 980
newChannel /= 10; //980 / 10 = 98
//These steps come from AN230 page 20 rev 0.5
readRegisters();
si4703_registers[CHANNEL] &= 0xFE00; //Clear out the channel bits
si4703_registers[CHANNEL] |= newChannel; //Mask in the new channel
si4703_registers[CHANNEL] |= (1<<TUNE); //Set the TUNE bit to start
updateRegisters();
delay(60); //Wait 60ms - you can use or skip this delay
//Poll to see if STC is set
while (1) {
readRegisters();
if ( (si4703_registers[STATUSRSSI] & (1<<STC)) != 0 ) break; //Tuning complete!
}
readRegisters();
si4703_registers[CHANNEL] &= ~(1<<TUNE); //Clear the tune after a tune has completed
updateRegisters();
//Wait for the si4703 to clear the STC as well
while (1) {
readRegisters();
if ( (si4703_registers[STATUSRSSI] & (1<<STC)) == 0 ) break; //Tuning complete!
}
}
int Si4703_Breakout::seekUp()
{
return seek(SEEK_UP);
}
int Si4703_Breakout::seekDown()
{
return seek(SEEK_DOWN);
}
void Si4703_Breakout::setVolume(int volume)
{
readRegisters(); //Read the current register set
if(volume < 0) volume = 0;
if (volume > 15) volume = 15;
si4703_registers[SYSCONFIG2] &= 0xFFF0; //Clear volume bits
si4703_registers[SYSCONFIG2] |= volume; //Set new volume
updateRegisters(); //Update
}
void Si4703_Breakout::readRDS(char* buffer, long timeout)
{
long endTime = millis() + timeout;
boolean completed[] = {false, false, false, false};
int completedCount = 0;
while ( completedCount < 4 && millis() < endTime ) {
readRegisters();
if ( si4703_registers[STATUSRSSI] & (1<<RDSR) ) {
// ls 2 bits of B determine the 4 letter pairs
// once we have a full set return
// if you get nothing after 20 readings return with empty string
uint16_t b = si4703_registers[RDSB];
int index = b & 0x03;
if (! completed[index] && b < 500) {
completed[index] = true;
completedCount ++;
char Dh = (si4703_registers[RDSD] & 0xFF00) >> 8;
char Dl = (si4703_registers[RDSD] & 0x00FF);
buffer[index * 2] = Dh;
buffer[index * 2 +1] = Dl;
//Serial.print(si4703_registers[RDSD]); Serial.print(" ");
//Serial.print(index);Serial.print(" ");
//Serial.write(Dh);
//Serial.write(Dl);
//Serial.println();
}
delay(40); //Wait for the RDS bit to clear
} else {
delay(30); //From AN230, using the polling method 40ms should be sufficient amount of time between checks
}
}
if (millis() >= endTime) {
buffer[0] ='\0';
return;
}
buffer[8] = '\0';
}
//To get the Si4703 inito 2-wire mode, SEN needs to be high and SDIO needs to be low after a reset
//The breakout board has SEN pulled high, but also has SDIO pulled high. Therefore, after a normal power up
//The Si4703 will be in an unknown state. RST must be controlled
int Si4703_Breakout::si4703_init()
{
wiringPiSetupGpio(); //Setup gpio access in BCM mode
//gpio bit-banging to get 2-wire (I2C) mode
pinMode(_resetPin, OUTPUT);
pinMode(_sdioPin, OUTPUT); //SDIO is connected to A4 for I2C
digitalWrite(_sdioPin, LOW); //A low SDIO indicates a 2-wire interface
digitalWrite(_resetPin, LOW); //Put Si4703 into reset
delay(1); //Some delays while we allow pins to settle
digitalWrite(_resetPin, HIGH); //Bring Si4703 out of reset with SDIO set to low and SEN pulled high with on-board resistor
delay(1); //Allow Si4703 to come out of reset
//Setup I2C
char filename[20];
snprintf( filename, 19, "/dev/i2c-1" ); //Handle both RPi board revisions
if ( (si4703_fd = open(filename, O_RDWR)) < 0 ) { //Open I2C slave device
perror(filename);
return(FAIL);
}
if ( ioctl(si4703_fd, I2C_SLAVE, SI4703) < 0 ) { //Set device address 0x10
perror("Failed to aquire bus access and/or talk to slave");
return(FAIL);
}
if ( ioctl(si4703_fd, I2C_PEC, 1) < 0 ) { //Enable "Packet Error Checking"
perror("Failed to enable PEC");
return(FAIL);
}
readRegisters(); //Read the current register set
si4703_registers[0x07] = 0x8100; //Enable the oscillator, from AN230 page 9, rev 0.61 (works)
updateRegisters(); //Update
delay(500); //Wait for clock to settle - from AN230 page 9
readRegisters(); //Read the current register set
si4703_registers[POWERCFG] = 0x4001; //Enable the IC
si4703_registers[SYSCONFIG1] |= (1<<RDS); //Enable RDS
si4703_registers[SYSCONFIG1] |= (1<<DE); //50kHz Europe setup
si4703_registers[SYSCONFIG2] |= (1<<SPACE0); //100kHz channel spacing for Europe
//si4703_registers[SYSCONFIG2] &= 0xFFF0; //Clear volume bits
//si4703_registers[SYSCONFIG2] |= 0x0001; //Set volume to lowest
updateRegisters(); //Update
delay(110); //Max powerup time, from datasheet page 13
return(SUCCESS);
}
void Si4703_Breakout::si4703_exit()
{
readRegisters();
si4703_registers[POWERCFG] = 0x0000; //Clear Enable Bit disables chip
updateRegisters();
}
//Read the entire register control set from 0x00 to 0x0F
uint8_t Si4703_Breakout::readRegisters()
{
int i = 0;
uint16_t buffer[16];
//Si4703 begins reading from upper byte of register 0x0A and reads to 0x0F, then loops to 0x00.
//We want to read the entire register set from 0x0A to 0x09 = 32 bytes.
if (read(si4703_fd, buffer, 32) != 32) {
perror("Could not read from I2C slave device");
return(FAIL);
}
//We may want some time-out error here
//Remember, register 0x0A comes in first so we have to shuffle the array around a bit
for (int x = 0x0A; ; x++) {
if (x == 0x10) x = 0; //Loop back to zero
si4703_registers[x] = (buffer[i] >> 8) | (buffer[i] << 8); // Convert to little-endian
i++;
if (x == 0x09) break; //We're done!
}
return(SUCCESS);
}
//Write the current 9 control registers (0x02 to 0x07) to the Si4703
//It's a little weird, you don't write an I2C addres
//The Si4703 assumes you are writing to 0x02 first, then increments
uint8_t Si4703_Breakout::updateRegisters()
{
int i = 0;
uint16_t buffer[6];
//A write command automatically begins with register 0x02 so no need to send a write-to address
//First we send the 0x02 to 0x07 control registers, first upper byte, then lower byte and so on.
//In general, we should not write to registers 0x08 and 0x09
for (int regSpot = 0x02; regSpot < 0x08; regSpot++) {
buffer[i] = (si4703_registers[regSpot] >> 8) | (si4703_registers[regSpot] << 8); // Convert to big-endian
i++;
}
if (write(si4703_fd, buffer, 12) < 12) {
perror("Could not write to I2C slave device");
return(FAIL);
}
return(SUCCESS);
}
void Si4703_Breakout::printRegisters()
{
int i;
printf("Registers\tValues\n");
for (i = 0; i < 16; i++) {
printf("0x%02X:\t%04X\n", i, si4703_registers[i]);
}
}
//Seeks out the next available station
//Returns the freq if it made it
//Returns zero if failed
int Si4703_Breakout::seek(uint8_t seekDirection)
{
readRegisters();
//Set seek mode wrap bit
si4703_registers[POWERCFG] |= (1<<SKMODE); //Allow wrap
//si4703_registers[POWERCFG] &= ~(1<<SKMODE); //Disallow wrap - if you disallow wrap, you may want to tune to 87.5 first
if ( seekDirection == SEEK_DOWN ) si4703_registers[POWERCFG] &= ~(1<<SEEKUP); //Seek down is the default upon reset
else si4703_registers[POWERCFG] |= 1<<SEEKUP; //Set the bit to seek up
si4703_registers[POWERCFG] |= (1<<SEEK); //Start seek
updateRegisters(); //Seeking will now start
//Poll to see if STC is set
while (1) {
readRegisters();
if ( (si4703_registers[STATUSRSSI] & (1<<STC)) != 0 ) break; //Tuning complete!
}
readRegisters();
int valueSFBL = si4703_registers[STATUSRSSI] & (1<<SFBL); //Store the value of SFBL
si4703_registers[POWERCFG] &= ~(1<<SEEK); //Clear the seek bit after seek has completed
updateRegisters();
//Wait for the si4703 to clear the STC as well
while (1) {
readRegisters();
if ( (si4703_registers[STATUSRSSI] & (1<<STC)) == 0 ) break; //Tuning complete!
}
if (valueSFBL) { //The bit was set indicating we hit a band limit or failed to find a station
return(FAIL);
}
return getChannel();
}
//Reads the current channel from READCHAN
//Returns a number like 973 for 97.3MHz
int Si4703_Breakout::getChannel()
{
readRegisters();
int channel = si4703_registers[READCHAN] & 0x03FF; //Mask out everything but the lower 10 bits
//Freq(MHz) = 0.100(in Europe) * Channel + 87.5MHz
//X = 0.1 * Chan + 87.5
channel += 875; //98 + 875 = 973
return(channel);
}