Skip to content

Latest commit

 

History

History
85 lines (61 loc) · 4.05 KB

README.md

File metadata and controls

85 lines (61 loc) · 4.05 KB

CAR_torch

Occluded Object Recognition Codebase

CAR_torch stands for Convolutional Architectures with Recurrence, pytorch implementation. It is the codebase used for the journal publication "Recurrent Processing Improves Occluded Object Recognition and Gives Rise to Perceptual Hysteresis" [1]. If you make use of this code please cite as follows:

[1] Ernst, M. R., Burwick, T., & Triesch, J. (2021). Recurrent Processing Improves Occluded Object Recognition and Gives Rise to Perceptual Hysteresis. In Journal of Vision

Getting started with the repository

  • Download the OSCAR version 2 datasets from Zenodo and put the in their respective folders in /datasets DOI
  • Configure the config.py file
  • Start an experiment on a slurm cluster using run_engine.py or on your local machine with engine.py

Prerequisites

Directory structure

.
├── datasets                          
│   ├── cifar10                      # CIFAR10
│   ├── cifar100                     # CIFAR100
│   ├── mnist                        # MNIST
│   ├── dynaMO                       # Dynamic Occluded MNIST (experimental)
│   ├── osfashionmnist2c             # OS-fashion-MNIST
│   ├── osmnist2c                    # OS-MNIST
│   ├── osfashionmnist2r             # OS-fashion-MNIST
│   ├── osmnist2r                    # OS-MNIST
│   ├── osycb2                       # OS-YCB
├── network_engine                    
│   ├── utilities             		    
│   │   ├── afterburner.py            # Combines experiment files post-hoc
│   │   ├── dataset_handler.py        # Pytorch dataloaders for different datasets
│   │   ├── helper.py                 # Helper functions
│   │   ├── metrics.py                # Distance metrics for high-dim. analysis
│   │   ├── publisher.py              # Create 'Paper-ready' plots      
│   │   ├── visualizer.py             # Visualization functions
│   │   ├── networks
│   │   │   ├── buildingblocks
│   │   │   │   ├── rcnn.py           # Dynamic network for recurrent networks
│   │   │   │   ├── convlstm.py       # Convolutional LSTM Networks (experimental)
│   ├── engine.py                     # Main Program
│   ├── config.py             		  # Experiment Parameters 
│   ├── run_engine.py                 # Setup and Run Experiments
├── experiments                       # Experiment saves
├── LICENSE                           # MIT License
├── README.md                         # ReadMe File
└── requirements.txt                  # conda/pip requirements

Installation guide

Forking the repository

Fork a copy of this repository onto your own GitHub account and clone your fork of the repository into your computer, inside your favorite SORN folder, using:

git clone "PATH_TO_FORKED_REPOSITORY"

Setting up the environment

Install Python 3.9 and the conda package manager (use miniconda). Navigate to the project directory inside a terminal and create a virtual environment (replace <ENVIRONMENT_NAME>, for example, with recurrentnetworks) and install the required packages:

conda create -n <ENVIRONMENT_NAME> --file requirements.txt python=3.7

Activate the virtual environment:

source activate <ENVIRONMENT_NAME>

License

This project is licensed under the MIT License - see the LICENSE file for details