-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_catboost_pred_uncer.py
338 lines (263 loc) · 13.1 KB
/
get_catboost_pred_uncer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from plotly.graph_objs.volume.caps import X
import EncoderFactory
from DatasetManager import DatasetManager
import pandas as pd
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.pipeline import FeatureUnion
import time
import os
import sys
from sys import argv
import pickle
from catboost import Pool, CatBoostRegressor, CatBoostClassifier
print("Read input...")
dataset_name = argv[1] # prepared_bpic2017
#optimal_params_filename = argv[2] # params_dir
results_dir = argv[2] # results_dir
en_size = int(argv[3]) # size of the ensemble
print(f"Ensemble size is: {en_size}")
calibrate = False
split_type = "temporal"
oversample = False
calibration_method = "beta"
train_ratio = 0.8
val_ratio = 0.2
results_dir = results_dir + "/" + dataset_name + "/"
# create results directory
if not os.path.exists(os.path.join(results_dir)):
os.makedirs(os.path.join(results_dir))
print('Preparing data...')
start = time.time()
# read the data
dataset_manager = DatasetManager(dataset_name)
data = dataset_manager.read_dataset()
min_prefix_length = 1
max_prefix_length = int(np.ceil(data.groupby(dataset_manager.case_id_col).size().quantile(0.9)))
cls_encoder_args = {'case_id_col': dataset_manager.case_id_col,
'static_cat_cols': dataset_manager.static_cat_cols,
'static_num_cols': dataset_manager.static_num_cols,
'dynamic_cat_cols': dataset_manager.dynamic_cat_cols,
'dynamic_num_cols': dataset_manager.dynamic_num_cols,
'fillna': True,
'dataset_name':dataset_name}
# split into training and test
if split_type == "temporal":
train, test = dataset_manager.split_data_strict(data, train_ratio, split=split_type)
else:
train, test = dataset_manager.split_data(data, train_ratio, split=split_type)
train, val = dataset_manager.split_val(train, val_ratio)
# generate data where each prefix is a separate instance
dt_train_prefixes = dataset_manager.generate_prefix_data(train, min_prefix_length, max_prefix_length)
dt_train_prefixes.to_pickle(os.path.join(results_dir, dataset_name + "_dt_train_prefixes.pkl"))
dt_test_prefixes = dataset_manager.generate_prefix_data(test, min_prefix_length, max_prefix_length)
dt_test_prefixes.to_pickle(os.path.join(results_dir, dataset_name + "_dt_test_prefixes.pkl"))
dt_val_prefixes = dataset_manager.generate_prefix_data(val, min_prefix_length, max_prefix_length)
dt_val_prefixes.to_pickle(os.path.join(results_dir, dataset_name + "_dt_val_prefixes.pkl"))
# encode all prefixes
feature_combiner = FeatureUnion(
[(method, EncoderFactory.get_encoder(method, **cls_encoder_args)) for method in ["static", "agg"]])
print("Start encoding...")
# train
X_train = feature_combiner.fit_transform(dt_train_prefixes)
y_train = dataset_manager.get_label_numeric(dt_train_prefixes)
train_data = pd.concat([pd.DataFrame(X_train), pd.DataFrame(y_train), ], axis=1) # pd.DataFrame(X_val)])
train_data.to_pickle(os.path.join(results_dir, dataset_name + "_train_data.pkl"))
del X_train
del y_train
# test
X_test = feature_combiner.fit_transform(dt_test_prefixes)
y_test = dataset_manager.get_label_numeric(dt_test_prefixes)
test_data = pd.concat([pd.DataFrame(X_test), pd.DataFrame(y_test)], axis=1) # pd.DataFrame(X_val)])
test_data.to_pickle(os.path.join(results_dir, dataset_name + "_test_data.pkl"))
del X_test
del y_test
# Valid
X_val = feature_combiner.fit_transform(dt_val_prefixes)
y_val = dataset_manager.get_label_numeric(dt_val_prefixes)
valid_data = pd.concat([pd.DataFrame(X_val), pd.DataFrame(y_val)], axis=1) # pd.DataFrame(X_val)])
valid_data.to_pickle(os.path.join(results_dir, dataset_name + "_valid_data.pkl"))
del X_val
del y_val
print("Read encoded data...")
df_agg = pd.read_csv('dt_transformed_agg_%s.csv'%dataset_name, sep=';')
df_static = pd.read_csv('dt_transformed_static_%s.csv'%dataset_name, sep=';')
static_agg_df = pd.concat([df_static, df_agg], axis=1)
cat_feat_idx = np.where(static_agg_df.dtypes != float)[0]
# rename columns
train_data.columns = list(static_agg_df.columns) + ["Outcome"] # + ["Treatment"]
test_data.columns = list(static_agg_df.columns) + ["Outcome"] # + ["Treatment"]
valid_data.columns = list(static_agg_df.columns) + ["Outcome"] # + ["Treatment"]
y_train = train_data['Outcome']
X_train = train_data.drop(['Outcome', ], axis=1)
y_valid = valid_data['Outcome']
X_valid = valid_data.drop(['Outcome'], axis=1)
y_test = test_data['Outcome']
X_test = test_data.drop(['Outcome'], axis=1)
# create results directory
#if not os.path.exists(os.path.join(results_dir)):
# os.makedirs(os.path.join(results_dir))
# train the model with pre-tuned parameters
#with open(optimal_params_filename, "rb") as fin:
# best_params = pickle.load(fin)
print("Create modle...")
print(f"Cat_feat_idx: {cat_feat_idx}")
# Ensemble of CatBoost
class Ensemble(object):
def __init__(self, esize=10, iterations=1000, lr=0.1, random_strength=0, border_count=128, depth=6, seed=100, best_param=None):
self.seed = seed
self.esize = esize
self.depth = depth
self.iterations = iterations
self.lr = lr # from tunning
self.random_strength = random_strength
self.border_count = border_count
self.best_param = best_param
self.ensemble = []
for e in range(self.esize):
model = CatBoostClassifier(iterations=self.iterations,
depth=self.depth,
border_count=self.border_count,
random_strength=self.random_strength,
loss_function='Logloss', # -ve likelihood
verbose=False,
bootstrap_type='Bernoulli',
posterior_sampling=True,
eval_metric='AUC',
use_best_model=True,
langevin=True,
#learning_rate=self.best_param['learning_rate'],
#subsample=self.best_param['subsample'],
random_seed=self.seed + e)
self.ensemble.append(model)
def fit(self, X_train, y_train, cat_feat_idx, eval_set=None):
for m in self.ensemble:
print(f"\nFitting model...")
m.fit(X_train, y=y_train, cat_features=cat_feat_idx, eval_set=(X_valid, y_valid))
print("best iter ", m.get_best_iteration())
print("best score ", m.get_best_score())
def predict_proba(self, x):
probs = []
for m in self.ensemble:
prob = m.predict_proba(x)
probs.append(prob)
probs = np.stack(probs)
return probs
def predict(self, x):
preds = []
for m in self.ensemble:
pred = m.predict(x)
preds.append(pred)
preds = np.stack(preds)
return preds
# eoe: Total uncer: entropy of the avg predictions
def entropy_of_expected(probs, epsilon=1e-10):
mean_probs = np.mean(probs, axis=0)
log_probs = -np.log(mean_probs + epsilon)
return np.sum(mean_probs * log_probs, axis=1)
# Data uncer: avg(entropy of indviduals)
def expected_entropy(probs, epsilon=1e-10):
log_probs = -np.log(probs + epsilon)
return np.mean(np.sum(probs * log_probs, axis=2), axis=0)
# Knowledge uncer
def mutual_information(probs, epsilon):
eoe = entropy_of_expected(probs, epsilon)
exe = expected_entropy(probs, epsilon)
return eoe - exe # knowldge_ucer = total_uncer - data_uncer
def ensemble_uncertainties(probs, epsilon=1e-10):
#print(f"Probs: {np.max(probs)}")
print(f"Ensemble size: {len(probs)}\n")
mean_probs = np.mean(probs, axis=0) # avg ensamble prediction
conf = np.max(mean_probs, axis=1) # max avg ensamble prediction: predicted class
eoe = entropy_of_expected(probs, epsilon)
exe = expected_entropy(probs, epsilon)
mutual_info = eoe - exe
uncertainty = {'confidence': conf,
'entropy_of_expected': eoe, # Total uncer: entropy of the avg predictions
'expected_entropy': exe, # Data uncer: avg(entropy of indviduals)
'mutual_information': mutual_info, # Knowledge uncer
}
print(f"total_uncer: {eoe}")
print(f"len total_uncer: {len(eoe)}\n")
print(f"Data_uncer: {exe}")
print(f"len Data_uncer: {len(exe)}\n")
print(f"Knowldge_uncer: {mutual_info}")
print(f"len Knowldge_uncer: {len(mutual_info)}\n")
return uncertainty
# cls = CatBoostClassifier(iterations=100,
# depth=6,
# border_count=128,
# random_strength=0,
# loss_function='Logloss',
# verbose=False,
# bootstrap_type='Bernoulli',
# posterior_sampling=True,
# eval_metric='Accuracy',
# use_best_model=True,
# langevin=True,
# learning_rate=best_params['learning_rate'],
# subsample=best_params['subsample'],
# random_seed=20)
#cls.fit(X_train, y_train, cat_features=cat_feat_idx, eval_set=(X_valid, y_valid))
ens = Ensemble(esize=en_size, iterations=1000, lr=0.1, depth=6, seed=2, random_strength = 100,)
ens.fit(X_train, y_train, cat_feat_idx, eval_set=(X_valid, y_valid))
probs_train = ens.predict_proba(X_train)
probs_test = ens.predict_proba(X_test)
probs_valid = ens.predict_proba(X_valid)
preds_train_e = ens.predict(X_train)
preds_test_e = ens.predict(X_test)
preds_valid_e = ens.predict(X_valid)
probs_train_mean = np.mean(ens.predict_proba(X_train), axis=0)
probs_test_mean = np.mean(ens.predict_proba(X_test), axis=0)
probs_valid_mean = np.mean(ens.predict_proba(X_valid), axis=0)
uncerts_train = ensemble_uncertainties(probs_train)
uncerts_test = ensemble_uncertainties(probs_test)
uncerts_valid = ensemble_uncertainties(probs_valid)
print("Predict train...")
preds_train_prob_1 = probs_train_mean[:, 1]
preds_train_prob_0 = probs_train_mean[:, 0]
preds_train = np.array(pd.DataFrame(preds_train_e).mode().iloc[0].astype(int))
#np.array(pd.DataFrame(preds).mode().iloc[0].astype(int))
print("Predict test...")
preds_test_prob_1 = probs_test_mean[:, 1]
preds_test_prob_0 = probs_test_mean[:, 0]
preds_test = np.array(pd.DataFrame(preds_test_e).mode().iloc[0].astype(int))
print("Predict valid")
preds_valid_prob_1 = probs_valid_mean[:, 1]
preds_valid_prob_0 = probs_valid_mean[:, 0]
preds_valid = np.array(pd.DataFrame(preds_valid_e).mode().iloc[0].astype(int))
print("Save results")
# write train set predictions
dt_preds_train = pd.DataFrame({"predicted_proba_0": preds_train_prob_0,
"predicted_proba_1": preds_train_prob_1,
"predicted": preds_train,
"actual": y_train,
"total_uncer": uncerts_train['entropy_of_expected'],
"data_uncer": uncerts_train['expected_entropy'],
"knowledge_uncer": uncerts_train["mutual_information"],
"confidence": uncerts_train["confidence"] })
dt_preds_train.to_pickle(os.path.join(results_dir, "preds_train_%s.pkl" % dataset_name))
# write test set predictions
dt_preds_test = pd.DataFrame({"predicted_proba_0": preds_test_prob_0,
"predicted_proba_1": preds_test_prob_1,
"predicted": preds_test,
"actual": y_test,
"total_uncer": uncerts_test['entropy_of_expected'],
"data_uncer": uncerts_test['expected_entropy'],
"knowledge_uncer": uncerts_test["mutual_information"],
"confidence": uncerts_test["confidence"] })
dt_preds_test.to_pickle(os.path.join(results_dir, "preds_test_%s.pkl" % dataset_name))
# write valid set predictions
dt_preds_valid = pd.DataFrame({"predicted_proba_0": preds_valid_prob_0,
"predicted_proba_1": preds_valid_prob_1,
"predicted": preds_valid,
"actual": y_valid,
"total_uncer": uncerts_valid['entropy_of_expected'],
"data_uncer": uncerts_valid['expected_entropy'],
"knowledge_uncer": uncerts_valid["mutual_information"],
"confidence": uncerts_valid["confidence"]})
dt_preds_valid.to_pickle(os.path.join(results_dir, "preds_valid_%s.pkl" % dataset_name))
print("write train-val set predictions CSV")
dt_preds_train.to_csv(os.path.join(results_dir, "preds_train_%s.csv" % dataset_name), sep=";", index=False)
dt_preds_valid.to_csv(os.path.join(results_dir, "preds_val_%s.csv" % dataset_name), sep=";", index=False)
dt_preds_test.to_csv(os.path.join(results_dir, "preds_test_%s.csv" % dataset_name), sep=";", index=False)