-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathslist.h
230 lines (205 loc) · 5.3 KB
/
slist.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#ifndef RDESTL_SLIST_H
#define RDESTL_SLIST_H
#include "allocator.h"
#include "iterator.h"
namespace rde
{
namespace internal
{
struct slist_base_node
{
slist_base_node()
{
reset();
}
void reset()
{
next = this;
}
bool in_list() const { return this != next; }
void link_after(slist_base_node* prevNode);
void unlink(slist_base_node* prevNode);
slist_base_node* next;
};
} // namespace internal
//=============================================================================
template<typename T, class TAllocator = rde::allocator>
class slist
{
private:
struct node: public internal::slist_base_node
{
node(): internal::slist_base_node() {}
explicit node(const T& v): internal::slist_base_node(), value(v) {}
T value;
};
static RDE_FORCEINLINE node* upcast(internal::slist_base_node* n)
{
return (node*)n;
}
template<typename TNodePtr, typename TPtr, typename TRef>
class node_iterator
{
public:
typedef forward_iterator_tag iterator_category;
explicit node_iterator(TNodePtr node)
: m_node(node)
{
}
template<typename UNodePtr, typename UPtr, typename URef>
node_iterator(const node_iterator<UNodePtr, UPtr, URef>& rhs)
: m_node(rhs.node())
{
}
TRef operator*() const { RDE_ASSERT(m_node != 0); return m_node->value; }
TPtr operator->() const { return &m_node->value; }
TNodePtr node() const { return m_node; }
TNodePtr next() const { return upcast(m_node->next); }
node_iterator& operator++()
{
m_node = upcast(m_node->next);
return *this;
}
node_iterator operator++(int)
{
node_iterator copy(*this);
++(*this);
return copy;
}
bool operator==(const node_iterator& rhs) const { return rhs.m_node == m_node; }
bool operator!=(const node_iterator& rhs) const { return !(rhs == *this); }
private:
TNodePtr m_node;
};
public:
typedef T value_type;
typedef TAllocator allocator_type;
typedef size_t size_type;
typedef node_iterator<node*, T*, T&> iterator;
typedef node_iterator<const node*, const T*, const T&> const_iterator;
static const std::size_t kNodeSize = sizeof(node);
explicit slist(const allocator_type& allocator = allocator_type())
: m_allocator(allocator)
{
m_root.reset();
}
template<class InputIterator>
slist(InputIterator first, InputIterator last,
const allocator_type& allocator = allocator_type())
: m_allocator(allocator)
{
m_root.reset();
assign(first, last);
}
slist(const slist& rhs, const allocator_type& allocator = allocator_type())
: m_allocator(allocator)
{
m_root.reset();
assign(rhs.begin(), rhs.end());
}
~slist()
{
clear();
}
slist& operator=(const slist& rhs)
{
if (this != &rhs)
assign(rhs.begin(), rhs.end());
return *this;
}
iterator begin() { return iterator(upcast(m_root.next)); }
const_iterator begin() const { return const_iterator(upcast(m_root.next)); }
iterator end() { return iterator(&m_root); }
const_iterator end() const { return const_iterator(&m_root); }
const T& front() const { RDE_ASSERT(!empty()); return upcast(m_root.next)->value; }
T& front() { RDE_ASSERT(!empty()); return upcast(m_root.next)->value; }
void push_front(const T& value)
{
node* newNode = construct_node(value);
newNode->link_after(&m_root);
}
void pop_front()
{
RDE_ASSERT(!empty());
node* n = upcast(m_root.next);
n->unlink(&m_root);
destruct_node(n);
}
void insert_after(iterator pos, const T& value)
{
node* newNode = construct_node(value);
newNode->link_after(pos.node());
}
template<class InputIterator>
void assign(InputIterator first, InputIterator last)
{
clear();
iterator it(&m_root);
while (first != last)
{
insert_after(it, *first);
++it;
++first;
}
}
void clear()
{
// quicker then erase(begin(), end())
node* it = upcast(m_root.next);
while (it != &m_root)
{
node* nextIt = upcast(it->next);
destruct_node(it);
it = nextIt;
}
m_root.reset();
}
bool empty() const { return !m_root.in_list(); }
// @todo: consider keeping size member, would make this O(1)
// as a policy? via preprocessor macro? TBD
size_type size() const
{
const node* it = upcast(m_root.next);
size_type size(0);
while (it != &m_root)
{
++size;
it = upcast(it->next);
}
return size;
}
// @return iterator prev such that ++prev == nextIt
// @note linear complexity
static iterator previous(iterator nextIt)
{
RDE_ASSERT(nextIt.node()->in_list());
iterator prevIt = nextIt;
while (nextIt.node() != prevIt.next())
++prevIt;
return prevIt;
}
static const_iterator previous(const_iterator nextIt)
{
RDE_ASSERT(nextIt.node()->in_list());
const_iterator prevIt = nextIt;
while (nextIt.node() != prevIt.next())
++prevIt;
return prevIt;
}
private:
node* construct_node(const T& value)
{
void* mem = m_allocator.allocate(sizeof(node));
return new (mem) node(value);
}
void destruct_node(node* n)
{
n->~node();
m_allocator.deallocate(n, sizeof(node));
}
allocator_type m_allocator;
node m_root;
};
} // namespace rde
//-----------------------------------------------------------------------------
#endif // RDESTL_SLIST_H