-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathsignature_analysis.R
executable file
·276 lines (244 loc) · 12.9 KB
/
signature_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/opt/common/CentOS_6-dev/R/R-3.2.2/bin/Rscript
suppressMessages(library(plyr))
suppressMessages(library(dplyr))
suppressMessages(library(data.table))
suppressMessages(library(ggplot2))
suppressMessages(library(grid))
suppressMessages(library(cowplot))
suppressMessages(library(stringr))
suppressMessages(library(RColorBrewer))
suppressMessages(library(Cairo))
'%nin%' = Negate('%in%')
####################################################
### ggplot theme
####################################################
theme_bwmin = function(base_size = 12, base_family = 'Helvetica')
{
theme_bw(base_size = base_size, base_family = base_family) %+replace%
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
strip.background = element_blank(),
axis.line = element_blank(),
axis.ticks = element_line(size = 0.1),
legend.key = element_rect(color = 'white'),
legend.key.size = unit(.25, 'cm')
)
}
####################################################
####################################################
### Parse files
####################################################
parse_maf = function(filepath) {
maf = suppressWarnings(fread(filepath)) %>%
tbl_df()
if ('Ref_Tri' %nin% colnames(maf)) { stop('No Ref_Tri column in MAF.')
} else { maf }
}
parse_signatures = function(filepath) {
suppressWarnings(fread(filepath)) %>%
tbl_df() %>%
rename(Tumor_Sample_Barcode = `Sample Name`) %>%
select(-`Number of Mutations`) %>%
select(Tumor_Sample_Barcode, everything())
}
####################################################
####################################################
### Stratton plot matrix
####################################################
trinuc_context = c(
"ACAA", "ACAC", "ACAG", "ACAT", "CCAA", "CCAC", "CCAG", "CCAT",
"GCAA", "GCAC", "GCAG", "GCAT", "TCAA", "TCAC", "TCAG", "TCAT",
"ACGA", "ACGC", "ACGG", "ACGT", "CCGA", "CCGC", "CCGG", "CCGT",
"GCGA", "GCGC", "GCGG", "GCGT", "TCGA", "TCGC", "TCGG", "TCGT",
"ACTA", "ACTC", "ACTG", "ACTT", "CCTA", "CCTC", "CCTG", "CCTT",
"GCTA", "GCTC", "GCTG", "GCTT", "TCTA", "TCTC", "TCTG", "TCTT",
"ATAA", "ATAC", "ATAG", "ATAT", "CTAA", "CTAC", "CTAG", "CTAT",
"GTAA", "GTAC", "GTAG", "GTAT", "TTAA", "TTAC", "TTAG", "TTAT",
"ATCA", "ATCC", "ATCG", "ATCT", "CTCA", "CTCC", "CTCG", "CTCT",
"GTCA", "GTCC", "GTCG", "GTCT", "TTCA", "TTCC", "TTCG", "TTCT",
"ATGA", "ATGC", "ATGG", "ATGT", "CTGA", "CTGC", "CTGG", "CTGT",
"GTGA", "GTGC", "GTGG", "GTGT", "TTGA", "TTGC", "TTGG", "TTGT"
)
nt_comp = list('G'='C', 'A'='T', 'C'='G', 'T'='A')
stratton_plot = function(maf, output_prefix, save_output = FALSE) {
### Count fractions of transitions in given trinucleotide context
trinuc_maf = filter(maf, Variant_Type == 'SNP') %>%
mutate(TriNuc_Context = ifelse(
Reference_Allele %in% c('C','T'),
paste0(str_sub(Ref_Tri,1,2),Tumor_Seq_Allele2,str_sub(Ref_Tri,3,3)),
paste0(str_sub(Ref_Tri,1,1),nt_comp[Reference_Allele],nt_comp[Tumor_Seq_Allele2],str_sub(Ref_Tri,3,3)))) %>%
filter(str_sub(TriNuc_Context,2,2) != str_sub(TriNuc_Context,3,3)) %>%
group_by(Tumor_Sample_Barcode, TriNuc_Context) %>%
summarize(TriNuc_Count = n()) %>%
mutate(TriNuc_Frac = TriNuc_Count/sum(TriNuc_Count))
### Plot
trinuc_maf = mutate(trinuc_maf, TriNuc_Context = factor(TriNuc_Context, levels = trinuc_context, ordered = T)) %>%
mutate(Transition = paste0(str_sub(TriNuc_Context,2,2),'>',str_sub(TriNuc_Context,3,3)))
outplot = ggplot(trinuc_maf, aes(TriNuc_Context, TriNuc_Frac, fill = Transition)) +
geom_bar(stat = 'identity') +
labs(x = '', y = 'Fraction') +
scale_x_discrete(labels = paste0(str_sub(levels(trinuc_maf$TriNuc_Context),1,2),str_sub(levels(trinuc_maf$TriNuc_Context),4,4))) +
scale_fill_manual(values = c("#1EBFF0", "#050708", "#E62725", "#CBCACB", "#A1CF64", "#EDC8C5")) +
scale_y_continuous(labels = scales::percent, breaks = seq(0, max(as.numeric(trinuc_maf$TriNuc_Frac)), .05), expand = c(0,0)) +
geom_hline(yintercept = seq(0, max(as.numeric(trinuc_maf$TriNuc_Frac)), .05), col = 'darkgrey', size = .25, alpha = .5) +
facet_wrap(~Tumor_Sample_Barcode) +
theme_bwmin() +
theme(text = element_text(size = 8), axis.ticks.x = element_blank(),
axis.text.x = element_text(angle = 90, vjust = .5, hjust = 0, size = 1),
panel.background = element_blank(), legend.title = element_blank(),
axis.ticks.y = element_blank(),
strip.text = element_text(size = 10))
CairoPDF(file = paste0(output_prefix, '_stratton_plots.pdf'), w = 12, h = 6)
print(outplot)
dev.off()
### Save output
if (save_output == T) saveRDS(trinuc_maf, file = paste0(output_prefix, '_trinuc_frac.rds'))
}
####################################################
####################################################
### Composite plot
####################################################
indels = c(
'Frame_Shift_Del', 'Frame_Shift_Ins', 'In_Frame_Del', 'In_Frame_Ins','frameshift_deletion',
'frameshift_insertion', 'nonframeshift_deletion', 'nonframeshift_insertion'
)
### Annotate known signatures
sign_map = c(
'1'='Age','2'='APOBEC.1','3'='BRCA1/2','4'='Smoking','6'='MMR.1','7'='UV','9'='IGHV_hypermutation',
'10'='POLE','11'='TMZ','13'='APOBEC.2','15'='MMR.2','20'='MMR.3','22'='Aristolochic_acid','26'='MMR.4','29'='Tobacco'
)
### Signature colors // grey for unknowns
grey_pal = colorRampPalette(brewer.pal(9, 'Greys'))(16) # Greys except for hand-picked signatures
sign_cols = c(
"#e41a1c","#377eb8","#4daf4a","#984ea3",grey_pal[2],"#ff7f00","#ffff33",grey_pal[3],"#a65628",
"#f781bf","#b2df8a",grey_pal[4],"#377eb8",grey_pal[5],"#ff7f00",grey_pal[6:9],"#ff7f00",
grey_pal[10],"#cab2d6",grey_pal[11:13],"#ff7f00",grey_pal[14:15],"#984ea3",grey_pal[16]
)
composite_plot = function(maf, sign, print_genes = '', output_prefix, save_output = TRUE) {
### Count somatic mutations
mut_count = group_by(maf, Tumor_Sample_Barcode) %>%
dplyr::summarize(
Total_Mutation_Count = n(),
Indel_Count = sum(Variant_Classification %in% indels),
Synonymous_SNV_Count = sum(Variant_Classification == 'Silent'),
Nonsynonymous_SNV_Count = sum(Variant_Classification %nin% c(indels, 'Silent'))
)
### Cluster by signatures
sample_clust = hclust(dist(sign[,-c(1:2)]))
sample_order = sign$Tumor_Sample_Barcode[sample_clust$order]
### Plot indel counts
mut_count = melt(mut_count, id.vars = 'Tumor_Sample_Barcode')
mut_count$Tumor_Sample_Barcode = factor(mut_count$Tumor_Sample_Barcode, levels = sample_order, ordered = T)
mut_indels = filter(mut_count, variable == 'Indel_Count') %>% droplevels()
mut_snvs = filter(mut_count, variable %in% c('Synonymous_SNV_Count', 'Nonsynonymous_SNV_Count'))
barplot_indels = ggplot(mut_indels, aes(x = Tumor_Sample_Barcode, y = value, fill = '#636363')) +
geom_bar(stat = 'identity') +
labs(y ='#Indels', x = '') +
scale_y_continuous(expand = c(0,0)) +
geom_hline(yintercept = 0, size = .25) +
guides(fill = guide_legend()) +
scale_fill_manual(values = '#9C824A') +
theme_bwmin() +
theme(axis.text.y = element_text(size = 6),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
panel.border = element_blank(),
plot.margin = unit(c(0,.25,0,.25), 'in'),
legend.position = 'none')
### Plot SNV counts
barplot_snvs = ggplot(mut_snvs, aes(x = Tumor_Sample_Barcode, y = value, fill = variable)) +
geom_bar(stat = 'identity') +
scale_fill_manual(values = c('#023474', '#EF0107')) +
labs(y = '#SNVs', x = '') +
guides(fill = guide_legend(keywidth = .5, keyheight = .5, title = '')) +
scale_y_continuous(expand = c(0,0)) +
geom_hline(yintercept = 0, size = .25) +
theme_bwmin() +
theme(axis.text.y = element_text(size = 6),
legend.key = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
panel.border = element_blank(),
plot.margin = unit(c(0,.25,0,.25), 'in'),
legend.position = 'none')
### Plot signatures
sign_melt = melt(sign, id.vars = c('Tumor_Sample_Barcode'), variable.name = 'Signature', value.name = 'Fraction') %>%
mutate(Signature = str_replace(Signature, 'Signature.', ''))
sign_melt$Signature = factor(sign_melt$Signature, levels = seq(1,30), ordered = T)
sign_melt$Signature = revalue(sign_melt$Signature, sign_map)
sign_melt$Tumor_Sample_Barcode = factor(sign_melt$Tumor_Sample_Barcode, levels = sample_order, ordered = T)
sample_sig = ggplot(sign_melt, aes(x = Tumor_Sample_Barcode, fill = Fraction)) +
geom_bar(aes(weight = Fraction, fill = Signature)) +
guides(fill = guide_legend(keywidth = .5, keyheight = .5, ncol = 2, title = 'Signature')) +
labs(y = 'Fraction of mutations', x = '') +
scale_fill_manual(values = sign_cols) +
scale_y_continuous(expand = c(0,0)) +
geom_hline(yintercept = c(0,1), size = .25) +
theme_bwmin() +
theme(legend.key = element_blank(),
axis.text.y = element_text(size = 6),
axis.text.x = element_text(angle = 90, vjust = .5, hjust = 0, size = 6),
axis.ticks.x = element_blank(),
plot.margin = unit(c(0,.25,0,.25), 'in'),
legend.position = 'none')
if (print_genes[1] != '') {
### Subset on selected genes
mutations = filter(maf, Hugo_Symbol %in% print_genes)
### Make oncoprint
mutations$Tumor_Sample_Barcode = factor(mutations$Tumor_Sample_Barcode, levels = sample_order, ordered = T)
mutation_heat = ggplot(mutations, aes(x = Tumor_Sample_Barcode, y = Hugo_Symbol)) +
geom_tile(data = filter(mutations, Mutation_Status == 'Somatic', Variant_Classification %in% c('Frame_Shift_Del', 'Frame_Shift_Ins')), fill = 'darkorange') +
geom_tile(data = filter(mutations, Mutation_Status == 'Somatic', Variant_Classification %in% c('In_Frame_Del', 'In_Frame_Ins', 'Missense_Mutation', 'Splice_Site')), fill = 'darkgreen') +
geom_tile(data = filter(mutations, Mutation_Status == 'Somatic', Variant_Classification %in% 'Nonsense_Mutation'), fill = 'black') +
geom_tile(data = filter(mutations, Mutation_Status == 'Germline'), fill = 'red', col = 'red') +
labs(y = '', x = '')
theme_bwmin() +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_text(size = 8),
plot.margin = unit(c(0,.25,0,.25), 'in'))
CairoPDF(file = paste0(output_prefix, '_composite_plot.pdf'), w = 8, h = 8)
outplot = plot_grid(barplot_snvs, barplot_indels, sample_sig, mutation_heat, ncol = 1, align = 'v', rel_heights = c(1,1,4,2))
print(outplot)
dev.off()
} else {
outplot = plot_grid(barplot_snvs, barplot_indels, sample_sig, ncol = 1, align = 'v', rel_heights = c(1,1,3))
CairoPDF(file = paste0(output_prefix, '_composite_plot.pdf'), w = 8, h = 6)
print(outplot)
dev.off()
}
#if (save_output) next() ### Save output in tabular format
}
####################################################
####################################################
### Run analysis
####################################################
if(!interactive()){
### Parse input arguments
suppressMessages(library(argparse))
parser=ArgumentParser()
parser$add_argument("-m", "--maf-path", nargs = 1, help = "MAF file with Ref_Tri column")
parser$add_argument("-s", "--sign-path", nargs = 1, help = "Signature decomposition")
parser$add_argument("-l", "--gene-list", type = "character", default = '', help = "Genes for oncoprint, comma-separated")
parser$add_argument("-p", "--output-prefix", type = "character", default = 'mutational_signatures', help = "Prefix for output")
args=parser$parse_args()
maf = args$maf_path
sign = args$sign_path
print_genes = unlist(strsplit(args$gene_list, ','))
output_prefix = args$output_prefix
### Read and parse MAF and signature decomposition
if (is.null(maf)) stop("Provide path to MAF file")
if (is.null(sign)) stop("Provide path to signature decomposition")
maf = parse_maf(maf)
sign = parse_signatures(sign)
### Plot Stratton plots
cat('Making Stratton plots...\n')
stratton_plot(maf, output_prefix)
### Plot composite plot
cat('Making composite plot...\n')
composite_plot(maf, sign, print_genes, output_prefix)
cat('Done!\n')
}
####################################################