-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimestep.F
2779 lines (2484 loc) · 107 KB
/
timestep.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C#define SB_WETDRY
C******************************************************************************
C PADCIRC VERSION 45.12 03/17/2006 *
C last changes in this file VERSION 45.12 *
C *
C The timestepping module is configured to allow selection of a number of *
C alternative algorithms within the overall FE framework. These algorithms *
C are selected by the TRUE/FALSE state of the logical variables listed below. *
C These variables are set in READ_INPUT.F, based on the value of the fort.15 *
C input parameter IM. The only exception is CGWCE_Lump which is set by a *
C preprocessor flag at compile time. The variables are passed in GLOBAL.F *
C *
C Logical Variable List (default value .FALSE., set in global.f) *
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
C C2DDI - 2D Depth Integrated model run *
C C3D - 3D model run *
C C3DDSS - Stress form of the 3D momentum equations *
C C3DVS - Velocity form of the 3D momentum equations *
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
C C2D_BTrans - Include a 2D baroclinic transport calculation *
C C2D_PTrans - Include a 2D passive transport calculation *
C C3D_BTrans - Include a 3D baroclinic transport calculation *
C (used in 3D subroutines only) *
C C3D_PTrans - Include a 3D passive transport calculation *
C (used in 3D subroutines only) *
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
C CBaroclinic - Include baroclinic terms *
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
C CPRECOR - Use the predictor-corrector algorithm for GWCE *
C and momentum equations (package deal) *
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
C See header.f for a summary history of code modifications. *
C******************************************************************************
C
SUBROUTINE TIMESTEP(IT,TimeLoc)
C
#ifdef IEEE_DEBUG
USE, INTRINSIC :: IEEE_ARITHMETIC
#endif
USE SIZES, ONLY : SZ, MNP, MNWPROH
USE GLOBAL, ONLY : UU1, VV1, QX1, QY1, QX2, QY2, UU2, VV2, MOM_LV_X,
& MOM_LV_Y, WSX2, WSY2, PR1, PR2, TiP1, TiP2, UU0, VV0, QY0,
& GWCE_LV, TRANS_LV_B, TRANS_LV_A, WSX1, WSY1, dp1, dp2, QN0,
& EN0, EN1, EN2, CICE1, CICE2, CICEOUT, RSNX1, RSNX2, RSNY1, RSNY2,
& QX0, QN1, QN2, RSNXOUT, RSNYOUT, LNM_BC1, LNM_BC2,
& QNIN1, QNIN2, ENIN1, ENIN2, EtaDisc, NIBNODECODE,
& BCHGTIMINC, ETA2,ElevDisc, BTIME1, BTIME2, BTIME_END, C2D_PTrans,
& C2DDI, C3D, C3DVS, CBAROCLINIC, CGWCE_New, CHOTHS, CICE_TIME1,
& CICE_TIME2, CICE_TIMINC, BTIMINC, CME_New_C1, CME_New_C2,
& CME_New_NC, CPRECOR, CTiP, DRAMP, DRampElev, DRampExtFlux,
& DRampIntFlux, DRampMete, DRampTip, DRampWRad, DTDP, DTDPHS,
& DUnRampMete, ENDWAVE, ErrorElev, Flag_ElevError, FluxSettlingIT,
& FluxSettlingTime, FTIMINC, IFNLFA, H0, IHOT, IM, INFO, WARNING,
& ERROR, logMessage, allMessage, setMessageSource, unsetMessageSource,
& inundationOutput, ITHS, METONLY, NCICE, NDDT, NFFR, NHSINC,
& NHSTAR, NOLIFA, NRamp, NRS, NSCREEN, NTIF, QTIME1, QTIME2, Ramp,
& RampElev, RampExtFlux, RampMete, RampTip, RampWRad, RBCRATIO,
& RBCTIME1, RBCTIME2, RBCTIMEINC, REFTIM, RES_BC_FLAG, RhoWat0,
& RSTIME1, RSTIME2, NWS, RSTIMINC, SCREENUNIT, SIGT0, STATIM, TK,
& WVNXOUT, WVNYOUT, WarnElev, PERT, FACET, FFT, AMIGT, SALTPHA,
& SALTAMP, NODECODE, scratchMessage, TPK, NOFF, DASigT, FFF,
& QNPH, QNAM, ENPH, ENAM, ETRF, FPER, FFACE, ETA1, FAMIG, LNM_BC,
& BCFLAG_LNM, usingDynamicWaterLevelCorrection,
& dynamicWaterLevelCorrection1, dynamicWaterLevelCorrection2, L_N, TKM,
& WarnElevDump, nodes_lg, NT, NM, NB, DEBUG, NHOUTONCE
#ifdef CSWAN
& , waveWindMultiplier
#endif
USE GWCE, ONLY : solveGWCE, numitr
USE MOMENTUM, ONLY : solveMomentumEq
USE WETDRY, ONLY : computeWettingAndDrying
USE WRITE_OUTPUT, ONLY : writeOutput2D, writeHotStart,
& writeWarnElev, collectInundationData, collectMinMaxData
USE MESH, ONLY : NE, NP, DP, SLAM, SFEA, ICS, TotalArea,
& MJU, Areas, SFAC
USE BOUNDARIES, ONLY : NOPE, NETA, NBOU, NVEL, LBCODEI, NBV, SIII,
& NFLUXF, NFLUXB, NFLUXGBC, NFLUXIB, NFLUXIBP, NFLUXRBC, CSII,
& BARLANHT, BARLANCFSP, NVELL, IBCONN, BARINHT, BARINCFSP,
& BARINCFSB, PIPEHT, PIPECOEF, PIPEDIAM
USE GLOBAL_IO, ONLY : nddt2get
USE HARM, ONLY : updateHarmonicAnalysis
USE WIND, ONLY : getMeteorologicalForcing, PRBCKGRND_MH2O, rsget,
& getdynamicWaterLevelCorrections
USE ADCIRC_MOD, ONLY : ADCIRC_Terminate
C.... TCM V49.64.01 ADDITIONS FOR ICE
USE OWI_ICE,ONLY : NCICE1_INIT,NCICE1_GET
C.....sb46.28sb03 added 09/xx/2006
USE RS2,ONLY : RS2INIT,RS2GET
USE NodalAttributes, ONLY :
& Apply2DBottomFriction,
& Apply2DInternalWaveDrag,
& Apply3DBottomFriction
& ,GeoidOffset
USE SUBDOMAIN, ONLY : subdomainOn, enforceBN, NOutGS,
& writeFort066, writeFort067, writeFort065,
& readFort020, readFort021, readFort019
c. RJW merged 08/26/2008 from Casey 071219:Added the following variables for 3D wet/dry.
USE GLOBAL_3DVS, ONLY:
& A, B, BSX, BSY, EVTOT, ISLIP, KP, Q, SIGMA, Z0B,NFEN
! arash 1/20/2016
& , BPG
#ifdef CMPI
USE MESSENGER
USE HSWRITER, ONLY: writeHotstart_through_HSwriter !st3 100711 for hsfile
#endif
#ifdef CSWAN
Casey 090302: We need these values from other places.
USE OWIWIND, ONLY: WindMultiplier
USE Couple2Swan, ONLY: ComputeWaveDrivenForces,
& CouplingInterval,
& COUPWIND,
& InterpoWeight,
& SWAN_WX2,
& SWAN_WY2
Casey 100205: Add a variable for writing of SWAN hot-start files.
& ,WriteSwanHotStart
#endif
USE WEIR_FLUX
USE SPONGELAYER, ONLY: LoadAbsLayerSigma, sponge_dis_mthd, sponge_opsplit0,
& adjust_sponge_sigma, getabslayerext, sponge_shift_soln
IMPLICIT NONE
INTEGER, intent(in) :: IT
C
c. RJW merged 08/26/2008 from Casey 071219:Added the following variables for 3D wet/dry.
INTEGER IE, I, J, K !local loop counters
INTEGER NM1, NM2, NM3
INTEGER NC1, NC2, NC3, NCEle
INTEGER NCyc, NA
INTEGER :: itest
INTEGER :: kemax
INTEGER :: kvmax
INTEGER :: nnbb
REAL(SZ) :: velabs
REAL(SZ) :: vel
REAL(SZ) :: velmax
INTEGER :: errorElevExceeded
INTEGER :: warnElevExceeded
logical, save :: EtaDisc_Fill = .TRUE.
REAL(SZ) ArgT, ArgTP, ArgSAlt
REAL(SZ) CCSFEA
REAL(SZ) ElMax
REAL(SZ) PIPE_FLUX
REAL(SZ) H2N1, H2N2, H2N3
REAL(SZ) EtaN1,EtaN2,EtaN3
REAL(SZ) QTRatio
REAL(SZ) RStRatio, RSX, RSY
REAL(SZ) SAltMul, S2SFEA
REAL(SZ) H1
REAL(SZ) TPMul
REAL(SZ) UN1
REAL(8) AreaIE2,AreaEle
REAL(8) FDX1, FDX2, FDX3, FDY1, FDY2, FDY3
REAL(8) FDX1O2A, FDX2O2A, FDX3O2A, FDY1O2A, FDY2O2A, FDY3O2A
REAL(8),intent(out) :: TimeLoc
REAL(8) TimeH
REAL(8) runperccomplete
C kmd48.33bc - added in the heat flux variables
CHARACTER(80) :: CDUM80
INTEGER :: NumofBCNode
REAL(SZ), SAVE :: StaTimHS, RefTimHS
INTEGER :: NOD
C TCM V49.64.01 -- ADDED FOR ICE CONCENTRATION FIELDS
REAL(SZ) CICE_TRatio !ICE VARIABLES
C TCM v50.66.02 -- Added for Time Varying Bathymetry
INTEGER :: IJK
REAL(SZ) ETA2TMP,DPTMP,DPTMP2,BTRATIO !tcm v50.66.01 bathymetry changes
REAL(SZ) :: ARG, ARGJ, RFF
C....... DW
REAL(SZ):: RAMPTMP
LOGICAL, SAVE:: FIRST_ADJ_ABS_LAYER = .TRUE.
LOGICAL, SAVE:: FIRST_ENTER = .TRUE.
INTEGER:: NBDI, istep
C.......
call setMessageSource("timestep")
#if defined(TIMESTEP_TRACE) || defined(ALL_TRACE)
call allMessage(DEBUG,"Enter.")
#endif
C kmd48.33bc - changed for timestep changes in the hot start files
C jgf46.21 Combined flux/radiation b.c. for rivers
#ifdef IBM
IF (CHOTHS.eqv..true.) THEN
FluxSettlingIT=INT(FluxSettlingTime*86400.d0/DTDPHS,KIND(0.0D0))
ELSE
FluxSettlingIT=INT(FluxSettlingTime*86400.d0/DTDP,KIND(0.0D0))
END IF
#else
IF (CHOTHS.eqv..true.) THEN
FluxSettlingIT=INT(FluxSettlingTime*86400.d0/DTDPHS)
ELSE
FluxSettlingIT=INT(FluxSettlingTime*86400.d0/DTDP)
END IF
#endif
C... COMPUTE MASTER TIME WHICH IS REFERENCED TO THE BEGINNING TIME OF
C... THE MODEL RUN
C...
TimeLoc=IT*DTDP + StaTim*86400.D0
C kmd48.33bc - added for the changes in the timestep in the hot start files
IF (CHOTHS.eqv..true.) THEN
IF ((ITHS+1).EQ.IT) THEN
StaTimHS=((IT-1)*DTDPHS)/86400.D0
RefTimHS=((IT-1)*DTDP)/86400.D0
END IF
TimeLoc=IT*DTDP + (StaTimHS - RefTimHS)*86400.D0
END IF
C... HARMONIC CALCULATIONS ARE MADE FOR TIME WHICH INCLUDES THE REFTIM
C... TO ALLOW FOR THE POSSIBILITY THAT THE EQUILIBRIUM ARGUMENTS MAY
C... BE FOR A TIME OTHER THAN THE MODEL STARTING TIME.
C...
TimeH=IT*DTDP + (StaTim - RefTim)*86400.D0
!kmd - added this for the cases where the timestep changes from hot start timestep
IF (CHOTHS.eqv..true.) THEN
IF ((ITHS+1).EQ.IT) THEN
StaTimHS=((IT-1)*DTDPHS)/86400.D0
StaTim=((IT-1)*DTDP)/86400.D0
END IF
TimeH=IT*DTDP + ((StaTimHS - StaTim) - RefTim)*86400.D0
END IF
C-------------------TEMPORAL RAMP-------------------------------------
C... NOTE: MOVED HERE BY DW/WJP : May 3rd 2018
C... DEFINE Ramp FUNCTION FOR BOUNDARY ELEVATION FORCING, WIND AND PRESSURE
C.... FORCING AND TIDAL POTENTIAL FORCING
C...
C
C jgf46.08 Calculate ramp functions.
C jgf46.21 Modify to match behavior of 46.02
SELECT CASE(NRamp)
CASE(0)
Ramp=1.0D0
RampExtFlux=1.0D0
RampIntFlux=1.0D0
RampElev=1.0D0
RampTip=1.0D0
RampMete=1.0D0
RampWRad=1.0D0
Corbitt 1203022: Added Zach's Fix for Assigning a Start Time to Mete Ramping
C kmd48.33bc - ramp changes with baroclinic when timestep is changed
CASE(1)
!jgf51.51.21: Fixed the case where nramp=1 but dramp=0.0d0.
if (dramp.lt.1.0e-6) then
Ramp=1.0d0
RampExtFlux=1.0D0
RampIntFlux=1.0D0
RampElev=1.0D0
RampTip=1.0D0
RampMete=1.0D0
RampWRad=1.0D0
else
ramp=tanh((2.d0*timeloc/86400.d0)/dramp)
RampExtFlux=TANH((2.D0*TimeLoc/86400.D0)/dramp)
RampIntFlux=TANH((2.D0*TimeLoc/86400.D0)/dramp)
RampElev=TANH((2.D0*TimeLoc/86400.D0)/dramp)
RampTip=TANH((2.D0*TimeLoc/86400.D0)/dramp)
RampMete=TANH((2.D0*TimeLoc/86400.D0)/dramp)
RampWRad=TANH((2.D0*TimeLoc/86400.D0)/dramp)
endif
CASE(2,3,4,5,6,7,8)
Ramp=TANH((2.D0*TimeLoc/86400.D0)/DRamp)
RampExtFlux=TANH((2.D0*TimeLoc/86400.D0)/DRampExtFlux)
RampIntFlux=TANH((2.D0*TimeLoc/86400.D0)/DRampIntFlux)
RampElev=TANH((2.D0*TimeLoc/86400.D0)/DRampElev)
RampTip=TANH((2.D0*TimeLoc/86400.D0)/DRampTip)
Corbitt 1203022: Added Zach's Fix for Assigning a Start Time to Mete Ramping
RampMete=TANH((2.D0*(TimeLoc/86400.D0-DUnRampMete))/DRampMete)
RampWRad=TANH((2.D0*TimeLoc/86400.D0)/DRampWRad)
END SELECT
C
C jgf46.21 If there is an external flux (i.e. river) boundary, turn
C off all forcings except the river flux forcing for the duration of
C the FluxSettlingTime. When the FluxSettlingTime has ended, turn
C all forcings back on.
IF (NRamp.gt.1) THEN
IF(IT.LT.(FluxSettlingIT+10)) THEN
Ramp=0.0
RampIntFlux=0.0
RampElev=0.0
RampTip=0.0
RampMete=0.0
RampWRad=0.0
ELSE
Ramp=TANH((2.D0*(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRamp)
RampIntFlux=TANH((2.D0
& *(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRampIntFlux)
RampElev=TANH((2.D0
& *(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRampElev)
RampTip=TANH((2.D0
& *(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRampTip)
RampMete=TANH((2.D0
& *(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRampMete)
RampWRad=TANH((2.D0
& *(IT-FluxSettlingIT-10)*DTDP/86400.D0)/DRampWRad)
Corbitt 1203022: Added Zach's Fix for Assigning a Start Time to Mete Ramping
IF(NRamp.eq.8) then
RampMete=TANH((2.D0*((((IT)*DTDP)/86400.D0)-DUnRampMete))/DRampMete)
endif
ENDIF
!jgf49.44: Cover the case where the ramp length is zero.
IF (DRamp.lt.1.0e-6) Ramp = 1.0d0
IF (DRampExtFlux.lt.1.0e-6) RampExtFlux = 1.0d0
IF (DRampIntFlux.lt.1.0e-6) RampIntFlux = 1.0d0
IF (DRampElev.lt.1.0e-6) RampElev = 1.0d0
IF (DRampTip.lt.1.0e-6) RampTip = 1.0d0
IF (DRampMete.lt.1.0e-6) RampMete = 1.0d0
IF (DRampWRad.lt.1.0e-6) RampWRad = 1.0d0
ELSE
!jgf49.44: Cover the case where the ramp length is zero.
IF (DRamp.lt.1.0e-6) Ramp = 1.0d0
ENDIF
C
C------DW
IF ( LoadAbsLayerSigma ) THEN
IF ( FIRST_ADJ_ABS_LAYER ) THEN
CALL Adjust_Sponge_Sigma( abs(DTDP) ) ;
FIRST_ADJ_ABS_LAYER = .FALSE. ;
END IF
END IF
C-----END DW
C-------------------TEMPORAL RAMP-------------------------------------
C... SHIFT THE FLUX PER UNIT WIDTH, DEPTH AVERAGED VELOCITIES, BOTTOM STRESS,
C... WIND STRESS, SURFACE PRESSURE AND TIDAL POTENTIALS TO PREVIOUS TIME STEP.
C... ZERO OUT THE NEW FORCING TERMS AND LOAD VECTORS
C... COMPUTE A NEW BOTTOM FRICTION COEFFICIENT
C...
ckmd Shift values in time for predictor-corrector algorithm
DO I=1,NP
if(CPRECOR) THEN
UU0(I)=UU1(I)
VV0(I)=VV1(I)
QX0(I)=QX1(I)
QY0(I)=QY1(I)
end if
QX1(I)=QX2(I)
QY1(I)=QY2(I)
UU1(I)=UU2(I)
VV1(I)=VV2(I)
GWCE_LV(I) =0.D0
MOM_LV_X(I)=0.D0
MOM_LV_Y(I)=0.D0
C... Transport
IF(IM.EQ.10) THEN
TRANS_LV_B(I)=0.D0
TRANS_LV_A(I)=0.D0
ENDIF
C... Wind (& wave radiation stress if used)
IF((NWS.NE.0).OR.(NRS.NE.0)) THEN
WSX1(I)=WSX2(I)
WSX2(I)=0.D0
WSY1(I)=WSY2(I)
WSY2(I)=0.D0
PR1(I)=PR2(I)
PR2(I) = PRBCKGRND_MH2O !tcm v49.16 20100617 added
ELSE
C WJP 02.26.2018 inserted from Dam's code
!c dw ------------- otherwise, tide run could fail
PR2(I) = PRBCKGRND_MH2O
END IF
C TIP..Tidal potential forcing
if(CTIP) then
TIP1(I)=TIP2(I)
TIP2(I)=0.D0
endif
END DO
!
! jgf: shift water level offset values
if (usingDynamicWaterLevelCorrection.eqv..true.) then
dynamicWaterLevelCorrection1(:) = dynamicWaterLevelCorrection2(:)
dynamicWaterLevelCorrection2(:) = 0.d0
endif
C
C.............................DW, sponge layer ..................
! Get
! Eta2_AbsLayer, uu2_AbsLayer, vv2_AbsLayer
IF ( LoadAbsLayerSigma ) THEN
!
IF ( .NOT. FIRST_ENTER ) THEN
!c u_{ext}^{n + 1} -- > eta2,
CALL GETABSLAYEREXT( IT, TimeLoc, TimeH, RampElev,
& GeoidOffset )
ELSE
RampTMP = RampElev ;
DO istep = 2, 1, -1
IF ( NRamp > 0 ) THEN
RampTMP=TANH((2.D0*(TimeLoc - istep*DTDP)/86400.D0)/DRampElev)
END IF
RampTMP = max(0.D0,RampTMP) ;
! u_{ext}^{n + 1 - istep} --> uu2
CALL GETABSLAYEREXT( IT - istep, TimeLoc - istep*DTDP,
& TimeH - istep*DTDP, RampTMP,
& GeoidOffset )
CALL SPONGE_SHIFT_SOLN( ) ;
! eta1 --> eta0, eta2 --> eta1, u2 --> u1
END DO
!c u_{ext}^{n + 1} -- > eta2,
CALL GETABSLAYEREXT( IT, TimeLoc, TimeH, RampElev,
& GeoidOffset )
FIRST_ENTER = .FALSE. ;
END IF
!
END IF
C.... END DW..........................................................
C...TCM V50.66.01 -- ADDING TIME DEPENDENT BATHYMETRY
C... so that total water column height is unchanged
C
C DP is linearly interpolated between DP1 and DP2
C during the time interval btime1 and btime_end.
C After btime_end, DP is equal to DP2
C
C DP1 DP2
C btime1 btime2 btime2 = btime1 + btiminc
C |---------x-----------------| btime_end = btime1 + btime_end < btime2
C btime_end
C
IF(abs(NDDT).EQ.1) THEN
! Get a new bathymetry from file if time to do so
IF(TimeLoc.GT.BTIME2) THEN !determine if bathy file time incr. is exceeded
BTIME1=BTIME2 !new starting time for this record
BTIME2=BTIME2+BTIMINC !new ending time for this record
BTIME_END = BTIME1 + BCHGTIMINC !ending time for bathymetry changes during the btiminc interval
DO I=1,NP
dp1(I) = dp2(I) ! move current data to old
END DO
!!! go get new record for all nodes
DO I=1,NP
READ(141,*) IJK,DP2(IJK)
ENDDO
C... IF WETTING AND DRYING WILL NOT BE USED, MAKE SURE ALL BATHYMETRIC
C... DEPTHS ARE > OR = TO H0.
IF ((NOLIFA.EQ.0).OR.(NOLIFA.EQ.1)) THEN
DO I=1,NP
IF (DP2(I).LT.H0) DP2(I) = H0
ENDDO
ENDIF
write(scratchMessage,'(A36,1X,E15.8,1X,A5)')
& 'BATHYMETRY RECORDS UPDATED AT TIME =',TIMELOC,'(SEC)'
call allMessage(INFO,scratchMessage)
ENDIF !test for updating bathymetry records
C.......If time is during the bathymetry change interval, then update bathymetry
IF(timeloc.LT.BTIME_END) THEN !tcm 20150728 changed .LE. to .LT.
bTRatio=(TimeLoc-bTIME1)/BCHGTIMINC ! interpolate
DO I=1,NP
DPTMP = btratio*(DP2(I)-DP1(I)) !Determine incremental amount to adjust bathymetry from DP1
DPTMP2 = DP1(I) + DPTMP !this is what will be the new bathymetry to use
DPTMP = DP(I)-DPTMP2 !this is now the adjustment in bathymetry for this timestep (how much to adjust eta2 by)
DP(I) = DPTMP2 !updating bathymetry to new value
ETA2TMP = ETA2(I)-DPTMP !subtracting elevation by incremental amount from one step step
ETA2(I) = ETA2TMP !updating elevation
ENDDO !I
ENDIF
IF(timeloc.EQ.BTIME_END) THEN
write(scratchMessage,'(A42,1X,E15.8,1X,A5)')
& 'BATHYMETRY VALUES ARE NOW FIXED AT TIME =',TIMELOC,'(SEC)'
call allMessage(INFO,scratchMessage)
DO I=1,NP
DPTMP = DP2(I)-DP(I) !figuring what the incremental amount will be to get to the final bathy value
DP(I) = DP2(I) !updating bathymetry to final value
ETA2TMP = ETA2(I)-DPTMP !subtracting elevation by incremental amount
ETA2(I) = ETA2TMP !updating elevation
ENDDO !I
ENDIF
ENDIF !NDDT = 1
IF(abs(NDDT).EQ.2) THEN
! Get a new bathymetry from file if time to do so
IF(TimeLoc.GT.BTIME2) THEN !determine if bathy file time incr. is exceeded
BTIME1=BTIME2 !new starting time for this record
BTIME2=BTIME2+BTIMINC !new ending time for this record
BTIME_END = BTIME1 + BCHGTIMINC !ending time for bathymetry changes during the btiminc interval
DO I=1,NP
dp1(I) = dp2(I) ! move current data to old
END DO
!!! go get new record for only some nodes, all
!!! other nodes keep their current value
CALL NDDT2GET( 141,DP2(:),-99999.d0 )
C... IF WETTING AND DRYING WILL NOT BE USED, MAKE SURE ALL BATHYMETRIC
C... DEPTHS ARE > OR = TO H0.
IF ((NOLIFA.EQ.0).OR.(NOLIFA.EQ.1)) THEN
DO I=1,NP
IF (DP2(I).LT.H0) DP2(I) = H0
ENDDO
ENDIF
write(scratchMessage,'(A36,1X,E15.8,1X,A5)')
& 'BATHYMETRY RECORDS UPDATED AT TIME =',TIMELOC,'(SEC)'
call allMessage(INFO,scratchMessage)
ENDIF !test for updating bathymetry records
C.......If time is during the bathymetry change interval, then update bathymetry
IF(timeloc.LT.BTIME_END) THEN !tcm 20150728 changed .LE. to .LT.
bTRatio=(TimeLoc-bTIME1)/BCHGTIMINC ! interpolate
DO I=1,NP
DPTMP = btratio*(DP2(I)-DP1(I)) !Determine incremental amount to adjust bathymetry from DP1
DPTMP2 = DP1(I) + DPTMP !this is what will be the new bathymetry to use
DPTMP = DP(I)-DPTMP2 !this is now the adjustment in bathymetry for this timestep (how much to adjust eta2 by)
DP(I) = DPTMP2 !updating bathymetry to new value
ETA2TMP = ETA2(I)-DPTMP !subtracting elevation by incremental amount from one step step
ETA2(I) = ETA2TMP !updating elevation
ENDDO !I
ENDIF
C
IF (timeloc.EQ.BTIME_END) THEN
write(scratchMessage,'(A42,1X,E15.8,1X,A5)')
& 'Bathymetry values are now fixed at time =',timeloc,'(sec).'
call allMessage(INFO,scratchMessage)
DO I=1,NP
DPTMP = DP2(I)-DP(I) !figuring what the incremental amount will be to get to the final bathy value
DP(I) = DP2(I) !updating bathymetry to final value
ETA2TMP = ETA2(I)-DPTMP !subtracting elevation by incremental amount
ETA2(I) = ETA2TMP !updating elevation
ENDDO !I
ENDIF
ENDIF !NDDT = 2
C
C
C-------------------BOTTOM FRICTION-------------------------------------
C
C 2DDI.Set up the 2D friction coefficient
if (C2DDI) then
CALL Apply2DBottomFriction(UU1, VV1, DP, ETA2, G, IFNLFA, NP, TK)
! WJP 02.24.2018 Get the wave drag coefficients
! that are put into TKM (which include TK from bottom friction)
IF (CBaroclinic) THEN
CALL Apply2DInternalWaveDrag(NP, TK, TKM, UU1, VV1, DP, IT)
ELSE
CALL Apply2DInternalWaveDrag(NP, TK, TKM)
ENDIF
endif
C..RJW Set up the 3D friction coefficient
if (C3D) then
CALL Apply3DBottomFriction(Q, SIGMA, DP, ETA2, G, IFNLFA, NP, TK, NFEN, Z0B)
endif
C-------------------BOTTOM FRICTION-------------------------------------
C
C
C... SHIFT THE SPECIFIED NORMAL FLOW BOUNDARY CONDITION TO PREVIOUS
C... TIME STEPS. ZERO OUT THE NEW SPECIFIED NORMAL FLOW BOUNDARY
C... CONDITION
C...
DO I=1,NVEL
QN0(I)=QN1(I)
QN1(I)=QN2(I)
QN2(I)=0.D0
EN0(I)=EN1(I)
EN1(I)=EN2(I)
EN2(I)=0.D0
END DO
C
C---------------------BEGIN ICE FIELDS----------------------------------------
C... UPDATE THE ICE CONCENTRATION FIELDS FROM UNIT 25,225,227
c... TCM V49.64.01 ADDED THE ICE FIELDS SECTION
C
IF (NCICE.EQ.12) THEN
IF(TimeLoc.GT.CICE_TIME2) THEN
CICE_TIME1 = CICE_TIME2
CICE_TIME2 = CICE_TIME2 + CICE_TIMINC
DO I=1,NP
CICE1(I) = CICE2(I)
END DO
CALL NCICE1_GET(CICE2,NP)
ENDIF
ENDIF
C TCM V49.64.01 ADDED ICE EFFECTS ON WIND DRAG COEFF
if (ncice.ne.0.and.ncice.ne.14) then
CICE_TRatio = (TimeLoc-CICE_TIME1)/CICE_TIMINC
do i=1,np
CICEOUT(I) = CICE1(I) + CICE_TRatio*(CICE2(I)-CICE1(I))
end do
endif
C--------------------END ICE FIELDS----------------------------------------
C---------------------WATER LEVEL OFFSET-----------------------------------
C jgf: update water level correction fields
if (usingDynamicWaterLevelCorrection.eqv..true.) then
call getDynamicWaterLevelCorrections(dynamicWaterLevelCorrection2, timeloc)
endif
C
C---------------------BEGIN MET FORCING----------------------------------------
call getMeteorologicalForcing(nws, wsx2, wsy2, pr2,
& wvnxout, wvnyout, timeloc)
C
C----------------------END MET FORCING----------------------------------------
C... UPDATE THE WAVE RADIATION STRESS AND READ IN NEW VALUES FROM
C.... UNIT 23. APPLY Ramp FUNCTION. ADD RADIATION STRESS TO WIND
C... STRESS
C...
C... NRS=2 was added. sb46.28sb03 09/xx/2006
C... TCM v49.48 Restructured the wave stress updates in order to
c... include NRS=4
#ifdef CSWAN
Casey 090302: Added these lines for coupling winds to SWAN.
Casey 121019: Added multiplication factor to be used before sending winds to coupled wave models.
if (coupwind) then
select case(abs(nws))
case(12,16)
do i=1,np
swan_wx2(i,2) = wvnxout(i) * waveWindMultiplier
& / ( rampMete * windMultiplier )
swan_wy2(i,2) = wvnyout(i) * waveWindMultiplier
& / ( rampMete * windMultiplier )
end do
case default
do i=1,np
swan_wx2(i,2) = wvnxout(i) * waveWindMultiplier / rampMete
swan_wy2(i,2) = wvnyout(i) * waveWindMultiplier / rampMete
end do
end select
endif
#endif
IF(NRS.NE.0) THEN
if((NRS.eq.1).or.(nrs.eq.2).or.(nrs.eq.3)) then
IF(TimeLoc.GT.RSTIME2) THEN
RSTIME1=RSTIME2
RSTIME2=RSTIME2+RSTIMINC
DO I=1,NP
RSNX1(I)=RSNX2(I)
RSNY1(I)=RSNY2(I)
END DO
IF(NRS.EQ.1) THEN
CALL RSGET(RSNX2,RSNY2)
ENDIF
IF(NRS.EQ.2) THEN
CALL RS2GET(RSNX2,RSNY2,NP)
ENDIF
#ifdef CSWAN
Casey 090302: Added for coupling to SWAN.
IF(NRS.EQ.3) THEN
InterpoWeight = 1.0
CALL ComputeWaveDrivenForces
Casey 090707: We want to extrapolate forward in time. Load the latest (current) forces
C into RSNX1/RSNY1, and then load the future forces into RSNX2/RSNY2.
DO I=1,NP
RSX = RSNX1(I)
RSY = RSNY1(I)
RSNX1(I) = RSNX2(I)
RSNY1(I) = RSNY2(I)
RSNX2(I) = RSNX2(I) + (RSNX2(I)-RSX)
RSNY2(I) = RSNY2(I) + (RSNY2(I)-RSY)
ENDDO
ENDIF
#endif
ENDIF
RStRatio=(TimeLoc-RSTIME1)/RSTIMINC
DO I=1,NP
RSX = RampWRad*(RSNX1(I) + RStRatio*(RSNX2(I)-RSNX1(I)))
RSY = RampWRad*(RSNY1(I) + RStRatio*(RSNY2(I)-RSNY1(I)))
WSX2(I) = WSX2(I) + RSX
WSY2(I) = WSY2(I) + RSY
! tcm v50.75 removed ifdef cswan to allow for use whenever nrs=3 or nrs=4
!#ifdef CSWAN
Casey 090302: Added these lines for output to the rads.64 file.
IF(ABS(NRS).EQ.3) then
RSNXOUT(I) = RSX
RSNYOUT(I) = RSY
ENDIF
!#endif
ENDDO
ENDIF !nrs = 1,2,or 3
! Tightly Coupled Code with STWAVE
! Apply the ramping function and add wave stress to WSX2,WSY2
! This cases uses a step function in time
IF(NRS == 4) THEN ! vjp modified Jan 22 2010
IF(TimeLoc.GE.RSTIME2) THEN !Get a new wave record
RSTIME1=RSTIME2
RSTIME2=RSTIME2+RSTIMINC
ENDIF
IF (TimeLoc > ENDWAVE+RSTIMINC) THEN
RSNX2(:) = 0.0d0; RSNY2(:) = 0.0d0
ENDIF
DO I=1,NP
RSX = RampWRad*RSNX2(I)
RSY = RampWRad*RSNY2(I)
WSX2(I) = WSX2(I) + RSX
WSY2(I) = WSY2(I) + RSY
! tcm v50.75 added for use whenever nrs=3 or nrs=4
RSNXOUT(I) = RSX
RSNYOUT(I) = RSY
END DO
ENDIF !(NRS = 4)
ENDIF !(End test for updating wave radiation stress)
C jgf48.4627 Skip past GWCE and momentum calculations if only
C meteorological output was requested.
IF (.NOT.METONLY) THEN
C kmd48.33 - added in information for the elevation boundary conditions
C used in prognostic runs. The diagnostic information is read
C in once and used during the simulation. Note that there is
C no ramp utilized for this boundary condition.
IF((C3D).AND.(RES_BC_FLAG.GT.0).AND.(CBAROCLINIC)) THEN
IF ((ABS(RES_BC_FLAG).GE.1).AND.(NOPE.GT.0)) THEN
Casey 140701: Added the following IF statement.
IF(BCFLAG_LNM.EQ.1)THEN
IF(TimeLoc.GT.RBCTIME2) THEN
RBCTIME1=RBCTIME2
RBCTIME2=RBCTIME2+RBCTIMEINC
READ(35,'(A)') CDUM80
DO I=1,NETA
LNM_BC1(I)=LNM_BC2(I)
READ(35,*) NOD,LNM_BC2(I)
END DO
END IF
RBCRATIO=(TimeLoc-RBCTIME1)/RBCTIMEINC
DO NumofBCNode=1,NETA
LNM_BC(NumofBCNode)=LNM_BC1(NumofBCNode)+
& RBCRATIO*(LNM_BC2(NumofBCNode)-
& LNM_BC1(NumofBCNode))
END DO
Casey 140701: Ending the IF statement.
ENDIF
END IF
END IF
C...
C... Tidal Potential Forcing
C... Note, the Earth tide potential reduction factor, ETRF(J) has been
C... incorporated into this calculation.
C...
C... WJP 02.21.2018 Rewriting for general formula for all species,
C cleaner code, and correct identification of 0,1,2 or higher species
IF(CTIP) THEN
TIPLOOP: DO J=1,NTIF
IF (PERT(J).EQ.0.) THEN
NCYC=0
ELSE
#ifdef IBM
NCYC=INT(timeh/PERT(J),KIND(0.0d0))
#else
NCYC=INT(timeh/PERT(J))
#endif
ENDIF
ARGT=AMIGT(J)*(timeh-NCYC*PERT(J))+FACET(J)
TPMUL=RampTip*ETRF(J)*TPK(J)*FFT(J)
SALTMUL=RampTip*FFT(J)
C WJP: We actually want to compare against diurnal and get 0,1,2
C or higher species (was opposite beforehand)
#ifdef IBM
NA = MIN(NINT(AMIGT(J)/7d-5,KIND(0.0d0)),2)
#else
NA = MIN(NINT(AMIGT(J)/7d-5),2)
#endif
C WJP: Rewritten so that we have a general formula for all
C species
DO I = 1,NP
ARGTP = ARGT + NA*SLAM(I)
ARGSALT = ARGT - SALTPHA(J,I)
TIP2(I) = TIP2(I) + TPMUL * L_N(NA,I) * COS(ARGTP)
& + SALTMUL * SALTAMP(J,I) * COS(ARGSALT)
ENDDO
ENDDO TIPLOOP
ENDIF
C...
C... Depth Averaged Baroclinic Forcing needed by GWCE and 2DDI Momentum
C... Compute this (divided by H, i.e., Bx/H, By/H) as a nodally averaged
C... quantity for smoothing
C...
IF (CBaroclinic) THEN
! Kendra45.12 - Test placement of BPG
IF (C3DVS) CALL BPG3D(IT)
! arash 01/20/2016
c WJP 03.23.18 adding in the 2D baroclinic option
IF (C2DDI) CALL BPG2D(IT,TimeLoc)
ENDIF
C...
C... COMPUTE SPECIFIED NORMAL FLOW BOUNDARY CONDITION
C...
IF(NFLUXF.EQ.1) THEN
IF (NFFR.GT.0) THEN
DO J=1,NFFR
IF(FPER(J).EQ.0.D0) THEN
NCYC=0
ELSE
#ifdef IBM
NCYC=INT(timeh/FPER(J),KIND(0.0d0))
#else
NCYC=INT(timeh/FPER(J))
#endif
ENDIF
ARGJ=FAMIG(J)*(timeh-NCYC*FPER(J))+FFACE(J)
RFF=FFF(J)*RampExtFlux !jgf46.02 use river ramp for Katrina
DO I=1,NVEL
ARG=ARGJ-QNPH(J,I)
QN2(I)=QN2(I)+QNAM(J,I)*RFF*COS(ARG)
IF (LBCODEI(I).EQ.32) THEN
ARG=ARGJ-ENPH(J,I)
EN2(I)=EN2(I)+ENAM(J,I)*RFF*COS(ARG)
ENDIF
END DO
END DO
END IF
!---------------------------------------------------------------------------------------------------
! arash wanted to debug, and everything seems to be fine.
IF((NFFR.EQ.0).OR.(NFFR.EQ.-1)) THEN
IF(TimeLoc.GT.QTIME2) THEN
QTIME1=QTIME2
QTIME2=QTIME2+FTIMINC
DO J=1,NVEL
IF((LBCODEI(J).EQ.2).OR.(LBCODEI(J).EQ.12)
& .OR.(LBCODEI(J).EQ.22)) THEN
QNIN1(J)=QNIN2(J)
READ(20,*) QNIN2(J)
! write(*,*) 'inside timestep: IT = ', IT
! write(*,*) 'inside timestep: J, QNIN2 = ', J, QNIN2(J)
! QNIN2 = 0.0d0 ! arash
ENDIF
IF(LBCODEI(J).EQ.32) THEN
QNIN1(J)=QNIN2(J)
ENIN1(J)=ENIN2(J)
READ(20,*) QNIN2(J),ENIN2(J)
! write(*,*) 'inside timestep: IT = ', IT
! write(*,*) 'inside timestep: we should not be here!'
ENDIF
END DO
ENDIF
!---------------------------------------------------------------------------------------------------
QTRATIO=(TimeLoc-QTIME1)/FTIMINC
! if (myproc == 12) write(*,*) 'QTRATIO = ', QTRATIO
!write(*,*) 'myproc =', myproc
DO I=1,NVEL
QN2(I)=RampExtFlux*(QNIN1(I)+QTRATIO*(QNIN2(I)-QNIN1(I)))
EN2(I)=RampExtFlux*(ENIN1(I)+QTRATIO*(ENIN2(I)-ENIN1(I)))
END DO
ENDIF
CRAL_add_42.06f
C jgf46.21 Collect elevation information for river radiation b.c.
IF(IT.EQ.FluxSettlingIT) THEN
EtaDisc_Fill = .FALSE. ! sb v46.48 11/06/2006
DO I=1, NP
EtaDisc(I) = Eta2(I) ! EtaDisc written to hotstart file
ENDDO
DO I=1,NVEL
IF(LBCODEI(I).EQ.52) THEN
NNBB=NBV(I)
ElevDisc(I)=Eta2(NNBB)
ENDIF
END DO
ELSE IF(EtaDisc_Fill .and. IT > FluxSettlingIT) THEN
EtaDisc_Fill = .FALSE.
DO I=1,NVEL
IF(LBCODEI(I).EQ.52) THEN
NNBB=NBV(I)
ElevDisc(I)=EtaDisc(NNBB) ! sb v46.48 11/06/2006
ENDIF
END DO
ENDIF
ENDIF
C...
C... COMPUTE DISCHARGE CONTRIBUTION FROM RADIATION BOUNDARY CONDITION
C...
IF(NFLUXRBC.EQ.1) THEN
DO J=1,NVEL
IF(LBCODEI(J).EQ.30) THEN
NNBB=NBV(J)
H1=DP(NNBB)+IFNLFA*ETA2(NNBB)
UN1=UU1(NNBB)*CSII(J)+VV1(NNBB)*SIII(J)
QN1(J)=H1*UN1
ENDIF
END DO
ENDIF
C... COMPUTE DISCHARGE CONTRIBUTION FROM ZERO NORMAL VELOCITY GRADIENT
C... BOUNDARY CONDITION
C...
IF(NFLUXGBC.EQ.1) THEN
DO J=1,NVEL
IF((LBCODEI(J).EQ.40).OR.(LBCODEI(J).EQ.41)) THEN
NNBB=NBV(J)
H1=DP(NNBB)+IFNLFA*ETA2(NNBB)
UN1=UU1(NNBB)*CSII(J)+VV1(NNBB)*SIII(J)
QN1(J)=H1*UN1
ENDIF
END DO
ENDIF
C...
C... COMPUTE SUPERCRITICAL OUTWARD NORMAL FLOW OVER SPECIFIED
C.... EXTERNAL BARRIER BOUNDARY NODES
C... COBELL - MOVED TO WEIR_BOUNDARY.F
IF(NFLUXB.EQ.1) THEN
DO I=1,NVEL
SELECT CASE(LBCODEI(I))
CASE(3,13,23)
CALL COMPUTE_EXTERNAL_BOUNDARY_FLUX(I,TIMELOC,QN2(I))
END SELECT
END DO
ENDIF
C... COMPUTE INWARD/OUTWARD NORMAL FLOW OVER SPECIFIED INTERNAL BARRIER
C... BOUNDARY (PERMEABLE OR NOT) NODES
C...
C jgf46.03 Begin block of notes for internal barrier boundaries
C
C NFLUXIB is set to 1 in read_input.F if there are internal barrier
C boundaries in the fort.14 (mesh) file.
C
C IBSTART is a flag that indicates the first time through the time
C stepping loop; set to 0 in read_input.F and set to 1 here.
C
C BARAVGWT was apparently intended for use in averaging internal
C barrier water levels. It is set to 0 in read_input.F, which seems
C to turn off any time averaging here.
C
C NIBNODECODE seems to be set to 1 for nodes receiving water across
C the barrier
C
C BARMIN is used in several places, mainly as the minimum elevation
C above the levee for flow to occur. It is a parameter and is set to
C 0.04 in global.F.
C
C
C...ZC - SIMPLIFIED THIS SECTION, MOVED FLUX COMPUTATION TO WEIR_BOUNDARY.F
C USE THE COMPILER FLAGS TO CHANGE IMPLEMENTATION:
C -DORIGWEIR - JOANNES WESTERINK ET AL IMPLEMENTATION (ORIGINAL)
C THIS DOES NOT APPEAR TO HAVE BEEN USED IN QUITE
C SOME TIME
C DEFAULT - SHINTARO BUNYA/SEIZO TANAKA IMPLEMENTATION FOR
C CHECKING FOR A WET EDGE BEFORE PASSING FLOW
C ACROSS A WEIR
IF(NFLUXIB.EQ.1) THEN
NIBNODECODE(:) = 0
I = 0
DO K = 1, NBOU
SELECT CASE(LBCODEI(I+1))
CASE(4,24,5,25)
DO J = 1,NVELL(K)*2
I = I + 1
CALL COMPUTE_INTERNAL_BOUNDARY_FLUX(I,J,K,
& TIMELOC,QN2(I))
ENDDO
CASE DEFAULT
I = I + NVELL(K)
END SELECT
ENDDO
ENDIF
C...
C... COMPUTE INWARD/OUTWARD NORMAL FLOW FOR INTERNAL BARRIER
C.... BOUNDARY NODES THROUGH CROSS BARRIER PIPES
C.... NOTE THAT THIS ADDS AN ADDITIONAL FLOW COMPONENT INTO QN2
C...
IF(NFLUXIBP.EQ.1) THEN
DO I=1,NVEL
IF((LBCODEI(I).EQ.5).OR.(LBCODEI(I).EQ.25)) THEN
PIPE_FLUX = 0D0
CALL COMPUTE_CROSS_BARRIER_PIPE_FLUX(I,TIMELOC,PIPE_FLUX)
QN2(I) = QN2(I) + PIPE_FLUX