forked from aadm/geophysical_notes
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathqsiwell2_dataprep.py
151 lines (122 loc) · 7.16 KB
/
qsiwell2_dataprep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# original data from Avseth, P., Mukerji, T. & Mavko, G. Quantitative Seismic Interpretation. (Cambridge University Press, 2005).
# available here:
# https://pangea.stanford.edu/researchgroups/srb/resources/books/quantitative-seismic-interpretation
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import matplotlib.colors as colors
# grey70 blue red brown
colori4 = ['#B3B3B3', '#003EFF','#FF0000', '#996633']
cmap4 = colors.ListedColormap(colori4[0:len(colori4)], 'indexed')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def colorbar_index(ncolors, cmap):
mappable = plt.cm.ScalarMappable(cmap=cmap)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors))
colorbar.set_ticklabels(range(0,ncolors+1))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Will use QSI dataset
# data for 5 wells are available, I will use well 2
w2=pd.read_table('well_2.txt', sep='\s+', header=None, skiprows=1, names=['DEPTH','VP','VS','RHO','GR', 'NPHI'], na_values=['-999.2500'])
tmp1=pd.read_table('well_2_denscorr.txt', sep='\s+', header=None, skiprows=1, names=['DEPTH','RHO_CORR'], na_values=['-999.2500'])
tmp2=pd.read_table('well_2_sats.txt', sep='\s+', header=None, skiprows=1, names=['DEPTH','SW','SWX'], na_values=['-999.2500'])
tmp2.DEPTH+=25 # adds KB?, i.e. after comparison with SW plot on p.262 (QSI) I see ~25m difference in SW log plot
# so I reckon the depths in well_2_sats.txt must be TVDSS
#------------------------------------------------
# plot qc n.1: density vs corrected density
plt.figure()
w2.plot('RHO', 'DEPTH', style=':r',xlim=(1.5, 3.0)) # will be renamed RHO_OLD
tmp1.plot('RHO_CORR', 'DEPTH', style='-k',xlim=(1.5, 3.0))
plt.gca().invert_yaxis()
plt.figure()
w2.plot('VP', 'DEPTH', style='-r')
plt.xlim(1000,4000), plt.ylim(2140,2180)
plt.gca().invert_yaxis()
# plot qc n.2: shifted SW log
plt.figure(); tmp2.plot('SW', 'DEPTH', style='-b',xlim=(-.1, 1.1), ylim=(2000, 2600)); plt.gca().invert_yaxis()
#------------------------------------------------
# will import RHO_CORR as the good one, therefore current RHO will be renamed to RHO_OLD
w2.rename(columns={'RHO':'RHO_OLD'}, inplace=True)
# add RHO_CORR as RHO to DataFrame w2 using np.interp
w2['RHO']= np.interp(w2.DEPTH.values, tmp1.DEPTH.values, tmp1.RHO_CORR.values, left=np.NaN, right=np.NaN)
# add SW, SWX to DataFrame w2 using np.interp
w2['SW']= np.interp(w2.DEPTH.values, tmp2.DEPTH.values, tmp2.SW.values, left=np.NaN, right=np.NaN)
w2['SWX']= np.interp(w2.DEPTH.values, tmp2.DEPTH.values, tmp2.SWX.values, left=np.NaN, right=np.NaN)
# calculates Ip, Is, Vp/Vs and transform vels in m/s
w2.VP=w2.VP*1000
w2.VS=w2.VS*1000
w2['VPVS']=w2.VP/w2.VS
w2['IP']=w2.VP*w2.RHO
w2['IS']=w2.VS*w2.RHO
# input elastic parameters; see also QSI, p.261, 336, 338
rho_qz=2.65; k_qz=37; mu_qz=44
rho_sh=2.81; k_sh=15; mu_sh=5
rho_w=1.09; k_w=2.8
rho_o=0.78; k_o=0.94 # # oil gravity: 32 API, GOR: 64
# shale volume (%) = (GR - GRmin)/(GRmax - GRmin) QSI reports WRONG equation!!! (GRmax-GR)/(GRmax-Grmin)
# see here http://www.spec2000.net/11-vshgr.htm
w2['VSH']=(w2.GR-w2.GR.min())/(w2.GR.max()-w2.GR.min())
# rho_matrix = vol_min1*rho_min1 + vol_min2*rho_min2
w2['RHOm']=w2.VSH*rho_sh + (1-w2.VSH)*rho_qz
# rho_fluid = Sw*rho_water + (1-Sw)*rho_oil
w2['RHOf']=w2.SW*rho_w + (1-w2.SW)*rho_o
# porosity=(rho_matrix- rho_log)/(rho_matrix - rho_fluid)
# rho = (1-phi)*rho_m + phi*rho_f
# rho = rho_m - phi*rho_m + phi*rho_f
# phi*rho_m - phi*rho_f = (rho_m - rho)
# phi*(rho_m - rho_f) = (rho_m - rho)
# phi = (rho_m - rho) / (rho_m - rho_f)
w2['PHI']= (w2.RHOm-w2.RHO) / ( w2.RHOm- w2.RHOf)
w2.to_csv('qsiwell2.csv',index=False)
# ********************************************************************
# ********************************************************************
# ********************************************************************
w1=pd.read_table('well_1.txt', sep='\s+', header=None, skiprows=1, names=['DEPTH','VP','RHO','GR'])
w5=pd.read_table('well_5.txt', sep='\s+', header=None, skiprows=1, names=['DEPTH','DTP','DTS','GR', 'RHO'])
# ********************************************************************
# ********************************************************************
# ********************************************************************
# log plot simile a quello che si ottiene con aageofisica.wellplot, con in piu' log di facies
ll=w2
versionelitolog=1
ztop=2100
zbot=2400
dummy=np.zeros(len(ll.VCL))
velmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VS']].min().values
velmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VP']].max().values
ipmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['IP']].min().values
ipmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['IP']].max().values
rmin=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VPVS']].min().values
rmax=ll[(ll.DEPTH>=ztop) & (ll.DEPTH<=zbot)].ix[:,['VPVS']].max().values
f, ax = plt.subplots(nrows=1, ncols=5, sharey=True, figsize=(12,6))
ll.plot(x='SW', y='DEPTH', ax=ax[0], style='b', label='Sw');
ll.plot(x='VCL', y='DEPTH', ax=ax[0], style='g', label='Vcl');
ll.plot(x='PHI', y='DEPTH', ax=ax[0], style='k', label='phi');
ll.plot(x='VP', y='DEPTH', ax=ax[1], style='k');
ll.plot(x='VS', y='DEPTH', ax=ax[1], style='r');
ll.plot(x='IP', y='DEPTH', ax=ax[2], style='k');
ll.plot(x='VPVS', y='DEPTH', ax=ax[3], style='k');
if versionelitolog==0:
ax[4].plot(dummy[(ll.LFC==0).values],ll.DEPTH[ll.LFC==0],'s',color='#B3B3B3',markeredgewidth=0)
ax[4].plot(dummy[(ll.LFC==1).values],ll.DEPTH[ll.LFC==1],'sb',label='LFC 1',markeredgewidth=0)
ax[4].plot(dummy[(ll.LFC==2).values],ll.DEPTH[ll.LFC==2],'sr',label='LFC 2',markeredgewidth=0)
ax[4].plot(dummy[(ll.LFC==3).values],ll.DEPTH[ll.LFC==3],'s',color='#996633',label='LFC 3',markeredgewidth=0)
ax[4].set_xlabel('LFC'), ax[4].set_xlim(-0.5,3), ax[3].set_ylim(ztop,zbot)
else:
ax[4].plot(ll.LFC[ll.LFC==0],ll.DEPTH[ll.LFC==0],'s',color='#B3B3B3',markeredgewidth=0)
ax[4].plot(ll.LFC[ll.LFC==1],ll.DEPTH[ll.LFC==1],'sb',label='LFC 1',markeredgewidth=0)
ax[4].plot(ll.LFC[ll.LFC==2],ll.DEPTH[ll.LFC==2],'sr',label='LFC 2',markeredgewidth=0)
ax[4].plot(ll.LFC[ll.LFC==3],ll.DEPTH[ll.LFC==3],'s',color='#996633',label='LFC 3',markeredgewidth=0)
ax[4].set_xlabel('LFC'), ax[4].set_xlim(-1,10), ax[3].set_ylim(ztop,zbot)
ax[0].set_xlabel('Vcl/Sw/phi'), ax[0].set_xlim(-0.1,1.1), ax[0].set_ylim(ztop,zbot)
ax[1].set_xlabel('Velocities (m/s)'), ax[1].set_xlim(velmin-velmin*.1,velmax+velmax*.1), ax[1].set_ylim(ztop,zbot)
ax[2].set_xlabel('Ip (m/s*g/cc)'), ax[2].set_xlim(ipmin-ipmin*.1,ipmax+ipmax*.1), ax[2].set_ylim(ztop,zbot)
ax[3].set_xlabel('Vp/Vs'), ax[3].set_xlim(rmin-rmin*.01,rmax+rmax*.01), ax[3].set_ylim(ztop,zbot)
ax[0].invert_yaxis()
ax[0].legend(fontsize='small', loc='lower left')
ax[1].legend(fontsize='small', loc='lower left')
ax[4].legend(fontsize='small', loc='lower right')
ax[4].set_xticklabels([])