forked from antoniorv6/ismir_fpomr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentations.py
35 lines (27 loc) · 1.1 KB
/
augmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import cv2
import numpy as np
from torchvision.transforms.functional import adjust_brightness, adjust_contrast
from torchvision.transforms import RandomPerspective
from PIL import Image
def DPIAdjusting(sample, factor):
width = int(np.ceil(sample.shape[1] * factor))
height = int(np.ceil(sample.shape[0] * factor))
return cv2.resize(sample, (width, height))
def Dilation(sample, kernel_size, iterations):
kernel = np.ones((kernel_size,kernel_size), np.uint8)
return cv2.dilate(sample, kernel=kernel, iterations=iterations)
def Erosion(sample, kernel_size, iterations):
kernel = np.ones((kernel_size,kernel_size), np.uint8)
return cv2.erode(sample, kernel=kernel, iterations=iterations)
def Brightness(X, factor):
X = Image.fromarray(X)
X = adjust_brightness(X, factor)
return np.array(X)
def Contrast(X, factor):
X = Image.fromarray(X)
X = adjust_contrast(X, factor)
return np.array(X)
def Perspective(X, scale):
X = Image.fromarray(X)
X = RandomPerspective(distortion_scale=scale, p=1, interpolation=Image.BILINEAR, fill=255)(X)
return np.array(X)