forked from mariaalfaroc/late-fusion-music-transcription
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
95 lines (84 loc) · 4.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
import os, shutil
import tensorflow as tf
import config
from experimentation import k_fold_experiment, k_fold_test_experiment
from word_graphs.smith_waterman import k_fold_multimodal_experiment as sw_k_fold_multimodal_experiment
from confusion_networks.cn_combination import k_fold_multimodal_experiment as cn_k_fold_multimodal_experiment
from word_graphs.wg_decoded_evaluation import k_fold_multimodal_experiment as cwg_k_fold_multimodal_experiment, k_fold_light_multimodal_experiment as light_cwg_k_fold_multimodal_experiment
from scenarios.folds_creation import create_folds, create_folds_according_ser
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
tf.config.list_physical_devices("GPU")
if __name__ == "__main__":
epochs = 150
scenarios = {"1": 2.5, "2": 2.2, "3": 2.0, "4": 4.0, "5": 3.7, "6": 3.0, "7": 10.5, "8": 9.0, "9": 6.3}
# Evaluate AMT on Scenario X to be able to create test partitions based on model performance
config.set_scenario(value="X")
# AMT
config.set_task(value="amt")
config.set_data_globals()
config.set_arch_globals(batch=4)
print(f"Task == {config.task}")
print(f"Scenario == {config.scenario}")
k_fold_experiment(epochs)
# Scenarios 1, 4, and 7 are the same as X for AMT
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario1" / "amt"))
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario4" / "amt"))
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario7" / "amt"))
# The rest of scenarios for AMT use the same model and the same vocabulary as in ScenarioX
# Right now, we only need to copy those files to Scenarios 2 and 3
for s in ["2", "3"]:
os.makedirs(config.base_dir / "Experiments" / f"Scenario{s}", exist_ok=True)
os.makedirs(config.base_dir / "Experiments" / f"Scenario{s}" / "amt", exist_ok=True)
for f in os.listdir(config.output_dir / "amt"):
os.makedirs(config.base_dir / "Experiments" / f"Scenario{s}" / "amt" / f, exist_ok=True)
shutil.copyfile(str(config.output_dir / "amt" / f / "best_model.keras"), config.base_dir / "Experiments" / f"Scenario{s}" / "amt" / f / "best_model.keras")
shutil.copyfile(str(config.output_dir / "amt" / f / "w2i.json"), config.base_dir / "Experiments" / f"Scenario{s}" / "amt" / f / "w2i.json")
# Create folds for the rest of the scenarios to evaluate OMR
for s, p_size in scenarios.items():
if s in ["1", "4", "7"]:
create_folds(p_size=p_size, scenario=s)
elif s in ["2", "5", "8"]:
create_folds_according_ser(p_size=p_size, scenario=s, symer_threshold=30)
else:
create_folds_according_ser(p_size=p_size, scenario=s, symer_threshold=10)
# STAND-ALONE EVALUATION
for s in scenarios.keys():
config.set_scenario(value=s)
if s in ["2", "3"]:
config.set_task(value="amt")
config.set_data_globals()
config.set_arch_globals(batch=4)
print(f"Task == {config.task}")
print(f"Scenario == {config.scenario}")
k_fold_test_experiment()
if s == "2":
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario5" / "amt"))
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario8" / "amt"))
else:
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario6" / "amt"))
shutil.copytree(src=str(config.output_dir / "amt"), dst=str(config.base_dir / "Experiments" / "Scenario9" / "amt"))
# OMR
config.set_task(value="omr")
config.set_data_globals()
config.set_arch_globals(batch=16)
print(f"Task == {config.task}")
print(f"Scenario == {config.scenario}")
k_fold_experiment(epochs)
# TODO: JJ code should be placed here
# MULTIMODAL EVALUATION
match = [2, 10, 20, 5]
mismatch = [-1, 5, 10, 2,]
gap_penalty = [-1, -2, -4, -1]
for s in scenarios.keys():
config.set_scenario(value=s)
print(f"Scenario{config.scenario}")
# 1) SMITH - WATERMAN
sw_k_fold_multimodal_experiment(match=match, mismatch=mismatch, gap_penalty=gap_penalty)
# 2) CONFUSION NETWORKS
cn_k_fold_multimodal_experiment()
# 3) COMBINED WORD GRAPHS
cwg_k_fold_multimodal_experiment()
# 4) LIGHT COMBINED WORD GRAPHS
light_cwg_k_fold_multimodal_experiment()