This repository has been archived by the owner on Aug 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 81
/
plot_nexrad.py
executable file
·146 lines (117 loc) · 4.49 KB
/
plot_nexrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python2
#
# This takes the output of extract_nexrad and generates images.
# It isn't very smart at the moment and won't draw anything
# until all input has been consumed, so it's not very useful
# for realtime continuous generation of maps.
#
import sys, math
import cairo, colorsys
intensities = {
0: colorsys.hls_to_rgb(240.0/360.0, 0.15, 1.0),
1: colorsys.hls_to_rgb(240.0/360.0, 0.2, 1.0),
2: colorsys.hls_to_rgb(200.0/360.0, 0.4, 1.0),
3: colorsys.hls_to_rgb(160.0/360.0, 0.4, 1.0),
4: colorsys.hls_to_rgb(120.0/360.0, 0.5, 1.0),
5: colorsys.hls_to_rgb(80.0/360.0, 0.5, 1.0),
6: colorsys.hls_to_rgb(40.0/360.0, 0.6, 1.0),
7: colorsys.hls_to_rgb(0.0/360.0, 0.7, 1.0)
}
def color_for(intensity):
r,g,b = intensities[intensity]
return cairo.SolidPattern(r,g,b,1.0)
# mercator projection (yeah, it's not great, but it's simple)
# lat, lon are in _arcminutes_
def project(lat,lon):
lat /= 60.0
lat = math.pi * lat / 180.0
lon /= 60.0
lon -= 360.0
lon = math.pi * lon / 180.0
x = lon
y = math.log(math.tan(math.pi/4.0 + lat/2.0))
return (x,y)
images = {}
while True:
line = sys.stdin.readline()
if not line: break
words = line.strip().split(' ')
if words[0] != 'NEXRAD': continue
nexrad, maptype, maptime, sf, latN, lonW, latSize, lonSize, blockdata = words
sf = int(sf)
latN = int(latN)
lonW = int(lonW)
latSize = int(latSize)
lonSize = int(lonSize)
key = maptype + '/' + maptime
if not key in images:
images[key] = {
'type' : maptype,
'time' : maptime,
'lat_min' : latN - latSize,
'lat_max' : latN,
'lon_min' : lonW,
'lon_max' : lonW + lonSize,
'blocks' : {
sf : [ (latN, lonW, latSize, lonSize, blockdata) ]
}
}
else:
image = images[key]
image['lat_min'] = min(image['lat_min'], latN - latSize)
image['lat_max'] = max(image['lat_max'], latN)
image['lon_min'] = min(image['lon_min'], lonW)
image['lon_max'] = max(image['lon_max'], lonW + lonSize)
if not sf in image['blocks']:
image['blocks'][sf] = [ (latN, lonW, latSize, lonSize, blockdata) ]
else:
image['blocks'][sf].append( (latN, lonW, latSize, lonSize, blockdata) )
for image in images.values():
lat_min = image['lat_min']
lat_max = image['lat_max']
lon_min = image['lon_min']
lon_max = image['lon_max']
# find most detailed scale; scale our image accordingly
sf = min(image['blocks'].keys())
if sf == 1: scale = 5.0
elif sf == 2: scale = 9.0
else: scale = 1.0
pixels_per_degree = 80.0 / scale
# project, find scale
x0,y0 = project(lat_min,lon_min)
x1,y1 = project(lat_min,lon_max)
x2,y2 = project(lat_max,lon_min)
x3,y3 = project(lat_max,lon_max)
xmin = min(x0,x1,x2,x3)
xmax = max(x0,x1,x2,x3)
ymin = min(y0,y1,y2,y3)
ymax = max(y0,y1,y2,y3)
xsize = int(pixels_per_degree * 180.0 * (xmax - xmin) / math.pi)
ysize = int(pixels_per_degree * 180.0 * (ymax - ymin) / math.pi)
print image['type'], image['time'], 'dimensions', xsize, ysize, 'layers', len(image['blocks'])
surface = cairo.ImageSurface(cairo.FORMAT_RGB24, xsize, ysize)
cc = cairo.Context(surface)
cc.set_antialias(cairo.ANTIALIAS_NONE)
cc.scale(1.0 * xsize / (xmax - xmin), -1.0 * ysize / (ymax - ymin))
cc.translate(-xmin, -ymax)
if image['type'] == 'CONUS':
cc.set_source(color_for(0))
else:
r,g,b = colorsys.hls_to_rgb(270.0/360.0, 0.10, 1.0)
cc.set_source(cairo.SolidPattern(r,g,b,1.0))
cc.paint()
for sf in sorted(image['blocks'].keys(), reverse=True): # lowest res first
for latN, lonW, latSize, lonSize, data in image['blocks'][sf]:
for y in xrange(4):
for x in xrange(32):
intensity = int(data[x+y*32])
lat = latN - y * latSize / 4.0
lon = lonW + x * lonSize / 32.0
cc.move_to(*project(lat,lon))
cc.line_to(*project(lat-latSize/4.0,lon))
cc.line_to(*project(lat-latSize/4.0,lon+lonSize/32.0))
cc.line_to(*project(lat,lon+lonSize/32.0))
cc.close_path()
cc.set_source(color_for(intensity))
cc.fill()
surface.write_to_png('nexrad_%s_%s.png' % (image['type'], image['time']))