-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
314 lines (288 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import pandas as pd
import os
import json
import argparse
import torch
import gc
from joblib import Parallel, delayed
from utils import (
get_raw_data,
sample_config,
fetch_model,
sample_data,
sample_val_data
)
# Define several constants -- Should not be changed
ALL_STATES= ['AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA',
'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD',
'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ',
'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC',
'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY', 'PR']
VAL_NUM_LIST = [16, 32, 64, 128] # number of validation samples
YEAR = 2018
SEED = 0
NUM_EXPERIMENTS = 200 # number of experiments for each algorithm
def load_train_val_test_data(args):
'''
Return train, val, test data
'''
task_name = args.task
year = YEAR
source_state_list = args.source
num_list = args.num
embedding_method = args.embedding
prompt_method = args.prompt
seed = args.seed
target_state_list = ALL_STATES
data_dir = '/shared/share_mala/llm-dro/'
val_num_list = VAL_NUM_LIST
# load training/validation data
train_dict = {}
val_dict = {}
test_dict = {}
for val_num in val_num_list:
val_dict[val_num] = {}
# load training data
for idx, state in enumerate(source_state_list):
X, y = get_raw_data(task_name, embedding_method, prompt_method,
state, data_dir, year)
# sample training/test data for the source state
trainx, trainy, testx, testy = sample_data(X, y, num=num_list[idx],
test=False, seed=seed)
train_dict[state] = [trainx, trainy]
test_dict[state] = [testx, testy]
trainx = np.concatenate([train_dict[state][0] for state in train_dict.keys()], axis=0)
trainy = np.concatenate([train_dict[state][1] for state in train_dict.keys()], axis=0)
# load validation and testing data
for idx, state in enumerate(target_state_list):
if state in source_state_list: # load validation data if source state
for val_num in val_num_list: # validation
val_dict[val_num][state] = test_dict[state]
else: # load test data if target state
X, y = get_raw_data(task_name, embedding_method, prompt_method,
state, data_dir, year)
# validation data
for val_num in val_num_list:
valx, valy, _ = sample_val_data(X, y, val_num=val_num, seed=seed)
val_dict[val_num][state] = [valx, valy]
# test data
testx, testy = sample_data(X, y, test=True, seed=seed)
test_dict[state] = [testx, testy]
return trainx, trainy, val_dict, test_dict
def result_exists(args):
# load args
task_name = args.task
source_state_list = args.source
embedding_method = args.embedding
prompt_method = args.prompt
initial_embedding_method = args.initial_embedding_method
training_method = args.training_method
model_name = args.model
experiment_id = args.id
source_state_str = "-".join(source_state_list)
# find result path
save_dir = '/shared/share_mala/llm-dro/'
if embedding_method == 'one_hot':
os.makedirs(f'{save_dir}/results/{task_name}/{embedding_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{embedding_method}/{source_state_str}/{model_name}/{experiment_id}.json'
elif embedding_method == 'e5':
os.makedirs(f'{save_dir}/results/{task_name}/{prompt_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{prompt_method}/{source_state_str}/{model_name}/{experiment_id}.json'
elif embedding_method == 'concat':
os.makedirs(f'{save_dir}/results/{task_name}/{embedding_method}/{initial_embedding_method}/{training_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{embedding_method}/{initial_embedding_method}/{training_method}/{source_state_str}/{model_name}/{experiment_id}.json'
else:
raise NotImplementedError
# check if the experiment has been done
if os.path.exists(path):
print(f"Experiment {task_name}-{source_state_str}-{model_name}-ID {experiment_id} already exists")
return True
else:
return False
def safe_experiment(trainx, trainy, val_dict, test_dict, args):
try:
experiment(trainx, trainy, val_dict, test_dict, args)
except Exception as e:
print(f"Error in experiment: {e}")
def experiment(trainx, trainy, val_dict, test_dict, args):
'''
fit and save models only, no validation or test
experiment_id: experiment id to random sample configs
'''
# load args
task_name = args.task
year = args.year
embedding_method = args.embedding
prompt_method = args.prompt
initial_embedding_method = args.initial_embedding_method
training_method = args.training_method
model_name = args.model
source_state_list = args.source
source_state_str = "-".join(source_state_list)
# training arguments
target_state_list = ALL_STATES
seed = args.seed
experiment_id = args.id
gpu_id = args.gpu_id
is_regression = args.is_regression
# set up gpu
if 'mlp' in model_name:
gpu_id = args.gpu_id
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
device = torch.device(f'cuda:{gpu_id}')
torch.cuda.set_device(device)
# find model dir
save_dir = '/shared/share_mala/llm-dro/'
if embedding_method == 'one_hot':
save_model_dir = f'/shared/share_mala/llm-dro/save_models/{task_name}/{source_state_str}/{embedding_method}/'
elif embedding_method == 'e5':
save_model_dir = f'/shared/share_mala/llm-dro/save_models/{task_name}/{source_state_str}/{embedding_method}/{prompt_method}/'
elif embedding_method == 'concat':
save_model_dir = f'/shared/share_mala/llm-dro/save_models/{task_name}/{source_state_str}/{embedding_method}/{initial_embedding_method}/{training_method}/'
else:
raise NotImplementedError
# find result path
if embedding_method == 'one_hot':
os.makedirs(f'{save_dir}/results/{task_name}/{embedding_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{embedding_method}/{source_state_str}/{model_name}/{experiment_id}.json'
elif embedding_method == 'e5':
os.makedirs(f'{save_dir}/results/{task_name}/{prompt_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{prompt_method}/{source_state_str}/{model_name}/{experiment_id}.json'
elif embedding_method == 'concat':
os.makedirs(f'{save_dir}/results/{task_name}/{embedding_method}/{initial_embedding_method}/{training_method}/{source_state_str}/{model_name}', exist_ok=True)
path = f'{save_dir}/results/{task_name}/{embedding_method}/{initial_embedding_method}/{training_method}/{source_state_str}/{model_name}/{experiment_id}.json'
else:
raise NotImplementedError
# check if the experiment has been done
if os.path.exists(path):
return
print(f"Experiment {task_name}-{source_state_str}-{model_name}-ID {experiment_id} begins")
# save hyperparamters
result_record = {}
result_record["model"] = model_name
result_record["source_state"] = source_state_str
result_record["year"] = year
result_record["embedding"] = embedding_method
if embedding_method != 'one_hot':
result_record["prompt"] = prompt_method
# load model and hyperparameters
if model_name == 'mlp':
if embedding_method == 'e5':
model = fetch_model('mlp_e5', is_regression, trainx.shape[1])
config = sample_config('mlp_e5', seed, experiment_id)
elif embedding_method == 'concat':
model = fetch_model('mlp_concat', is_regression, trainx.shape[1]-1, initial_embedding_method=initial_embedding_method, training_method=training_method)
config = sample_config(f'mlp_concat_{training_method}', seed, experiment_id)
result_record['initial_embedding_method'] = initial_embedding_method
result_record['training_method'] = training_method
else:
model = fetch_model(model_name, is_regression, trainx.shape[1])
config = sample_config(model_name, seed, experiment_id)
else:
model = fetch_model(model_name, is_regression, trainx.shape[1])
config = sample_config(model_name, seed, experiment_id)
result_record["config"] = config
if 'mlp' in model_name:
config["device"] = gpu_id
model.update(config) # update config and initialize model
print(config)
# model training
model.fit(trainx, trainy)
model.save(experiment_id, save_model_dir)
# model validation: use samples from the target state
if 'mlp' in model_name:
model.model.eval()
val_num_list = VAL_NUM_LIST
val_result_acc = {}
val_result_f1 = {}
for val_num in val_num_list:
# create a dict to store results
val_result_acc[val_num] = {}
val_result_f1[val_num] = {}
for target_state in target_state_list:
valx, valy = val_dict[val_num][target_state]
# save accuracy and f1 score
acc, f1 = model.score(valx, valy)
val_result_acc[val_num][target_state] = acc
val_result_f1[val_num][target_state] = f1
# save validation results
result_record["val_result_acc"] = val_result_acc
result_record["val_result_f1"] = val_result_f1
# model testing
if 'mlp' in model_name:
model.model.eval()
test_result_acc = {}
test_result_f1 = {}
for target_state in target_state_list:
testx, testy = test_dict[target_state]
# save accuracy and f1 score
acc, f1 = model.score(testx, testy)
test_result_acc[target_state] = acc
test_result_f1[target_state] = f1
# save test results
result_record["test_result_acc"] = test_result_acc
result_record["test_result_f1"] = test_result_f1
if 'mlp' in model_name:
result_record["config"]["device"] = gpu_id
# save result
with open(path, 'w') as f:
json.dump(result_record, f)
del model
torch.cuda.empty_cache()
gc.collect()
print(f"Experiment {task_name}-{source_state_str}-{model_name}-ID {experiment_id} finished!!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='DRO-bench')
parser.add_argument('--embedding', default='e5', help='embedding method, e.g., one-hot, e5')
parser.add_argument('--prompt', default='None', help='prompt method, e.g., wiki, gpt4')
parser.add_argument('--model', help='model, e.g., DRO, lr, etc')
parser.add_argument('--task', help='task, e.g., income, pubcov, mobility')
parser.add_argument('--source', type=str, nargs='+', help='source state list, e.g., CA PR')
parser.add_argument('--num', type=int, nargs='+', help='number of samples of each source state, e.g., 1000 1000')
parser.add_argument('--gpu', default=6, type=int, help='gpu id')
parser.add_argument('--id', default=0, type=int, help='experiment id')
parser.add_argument('--initial_embedding_method', default='wiki', type=str, help='initial embedding method, e.g., wiki, gpt4')
parser.add_argument('--training_method', default='pca', type=str, help='training method, e.g., pca, nn, freeze_embedding')
args = parser.parse_args()
# set seed
args.seed = SEED
args.is_regression = 0
args.year = YEAR
# mlp: execute single experiment
if args.model == 'mlp':
# parallel training
num_gpus = torch.cuda.device_count()
args.gpu_id = np.random.randint(0, num_gpus)
# check if the experiment has been done
if result_exists(args) == False:
# load training and testing data (once for a series of experiments)
trainx, trainy, val_dict, test_dict = load_train_val_test_data(args)
#print(f"Finish loading data! Train size is {trainx.shape}")
# start training
safe_experiment(trainx, trainy, val_dict, test_dict, args)
else:
num_experiments = NUM_EXPERIMENTS
if args.model in ['xgb', 'lightgbm']:
config_sum = 1944
elif args.model == 'svm':
config_sum = 34
elif args.model == 'rf':
config_sum = 1280
elif args.model == 'gbm':
config_sum = 360
elif args.model == 'lr':
config_sum = 23
# select config list
if config_sum >= num_experiments:
np.random.seed(SEED)
selected_configs = np.random.choice(config_sum, num_experiments, replace=False)
else:
selected_configs = np.arange(config_sum)
# load training and testing data (once for a series of experiments)
trainx, trainy, val_dict, test_dict = load_train_val_test_data(args)
print(f"Finish loading data! Train size is {trainx.shape}")
# parallel computing
for experiment_id in selected_configs:
args.id = experiment_id
safe_experiment(trainx, trainy, val_dict, test_dict, args)