-
Notifications
You must be signed in to change notification settings - Fork 26
/
diskNode.go
443 lines (395 loc) · 16.3 KB
/
diskNode.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
package cutedb
import "fmt"
/**
* Insertion Algorithm
1. It will begin from root and value will always be inserted into a leaf node
2. Insert Function Begin
3. If current node is leaf node, then return pick current node, Current Node Insertion Algorithm
1. This section gives 3 outputs, 1 middle element and 2 child nodes or null,null,null
2. Insert into the current node
3. If its full, then sort it and make two new child nodes without the middle node ( NODE CREATION WILL TAKE PLACE HERE)
4. take out the middle element along with the two child nodes, Leaf Splitting no children Algorithm:
1. Pick middle element by using length of array/2, lets say its index i
2. Club all elements from 0 to i-1, and i+1 to len(array) and create new seperate nodes by inserting these 2 arrays into the respective keys[] of respective nodes
3. Since the current node is a leaf node, we do not need to worry about its children and we can leave them to be null for both
4. return middle,leftNode,rightNode
5. If its not full, then return null,null,null
4. If this is not a leaf node, then find out the proper child node, Child Node Searching Algorithm:
1. Input : Value to be inserted, the current Node. Output : Pointer to the childnode
2. Since the list of values/elements is sorted, perform a binary or linear search to find the first element greater than the value to be inserted, if such an element is found, return pointer at position i, else return last pointer ( ie. the last pointer)
5. After getting the pointer to that element, call insert function Step 2 on that node RECURSIVELY ONLY HERE
6. If we get output from child node insert function Step 2, then this means that we have to insert the middle element received and accomodate the 2 pointers in the current node as well discarding the old pointer ( NODE DESTRUCTION WILL ONLY TAKE PLACE HERE )
1. If we got null as output then do nothing, else
2. Insert into current Node, Popped up element and two child pointers insertion algorithm, Popped Up Joining Algorithm:
1. Insert element and sort the array
2. Now we need to discard 1 child pointer and insert 2 child pointers, Child Pointer Manipulation Algorithm :
3. Find index of inserted element in array, lets say that it is i
4. Now in the child pointer array, insert the left and right pointers at ith and i+1 th index
3. If its full, sort it and make two new child nodes, Leaf Splitting with children Algorithm:
1. Pick middle element by using length of array/2, lets say its index i (Same as 3.4.1)
2. Club all elements from 0 to i-1, and i+1 to len(lkeys array) and create new seperate nodes by inserting these 2 arrays into the respective keys[] of respective nodes (Same as 3.4.2)
3. For children[], split the current node's children array into 2 parts, part1 will be from 0 to i, and part 2 will be from i+1 to len(children array), and insert them into leftNode children, and rightNode children
4. If current node is not the root node return middle,leftNode,rightNode
5. else if current node == rootNode, Root Node Splitting Algorithm:
1. Create a new node with elements array as keys[0] = middle
2. children[0]=leftNode and children[1]=rightNode
3. Set btree.root=new node
4. return null,null,null
*/
// DiskNode - In memory node implementation
type DiskNode struct {
keys []*pairs
childrenBlockIDs []uint64
blockID uint64
blockService *blockService
}
func (n *DiskNode) isLeaf() bool {
return len(n.childrenBlockIDs) == 0
}
// PrintTree - Traverse and print the entire tree
func (n *DiskNode) printTree(level int) {
currentLevel := level
if level == 0 {
currentLevel = 1
}
n.printNode()
for i := 0; i < len(n.childrenBlockIDs); i++ {
fmt.Println("Printing ", i+1, " th child of level : ", currentLevel)
childNode, err := n.getChildAtIndex(i)
if err != nil {
panic(err)
}
childNode.printTree(currentLevel + 1)
}
}
/**
* Do a linear search and insert the element
*/
func (n *DiskNode) addElement(element *pairs) int {
elements := n.getElements()
indexForInsertion := 0
elementInsertedInBetween := false
for i := 0; i < len(elements); i++ {
if elements[i].key >= element.key {
// We have found the right place to insert the element
indexForInsertion = i
elements = append(elements, nil)
copy(elements[indexForInsertion+1:], elements[indexForInsertion:])
elements[indexForInsertion] = element
n.setElements(elements)
elementInsertedInBetween = true
break
}
}
if !elementInsertedInBetween {
// If we are here, it means we need to insert the element at the rightmost position
n.setElements(append(elements, element))
indexForInsertion = len(n.getElements()) - 1
}
return indexForInsertion
}
func (n *DiskNode) hasOverFlown() bool {
return len(n.getElements()) > n.blockService.getMaxLeafSize()
}
func (n *DiskNode) getElements() []*pairs {
return n.keys
}
func (n *DiskNode) setElements(newElements []*pairs) {
n.keys = newElements
}
func (n *DiskNode) getElementAtIndex(index int) *pairs {
return n.keys[index]
}
func (n *DiskNode) getChildAtIndex(index int) (*DiskNode, error) {
return n.blockService.getNodeAtBlockID(n.childrenBlockIDs[index])
}
func (n *DiskNode) shiftRemainingChildrenToRight(index int) {
if len(n.childrenBlockIDs) < index+1 {
// This means index is the last element, hence no need to shift
return
}
n.childrenBlockIDs = append(n.childrenBlockIDs, 0)
copy(n.childrenBlockIDs[index+1:], n.childrenBlockIDs[index:])
n.childrenBlockIDs[index] = 0
}
func (n *DiskNode) setChildAtIndex(index int, childNode *DiskNode) {
if len(n.childrenBlockIDs) < index+1 {
n.childrenBlockIDs = append(n.childrenBlockIDs, 0)
}
n.childrenBlockIDs[index] = childNode.blockID
}
func (n *DiskNode) getLastChildNode() (*DiskNode, error) {
return n.getChildAtIndex(len(n.childrenBlockIDs) - 1)
}
func (n *DiskNode) getChildNodes() ([]*DiskNode, error) {
childNodes := make([]*DiskNode, len(n.childrenBlockIDs))
for index := range n.childrenBlockIDs {
childNode, err := n.getChildAtIndex(index)
if err != nil {
return nil, err
}
childNodes[index] = childNode
}
return childNodes, nil
}
func (n *DiskNode) getChildBlockIDs() []uint64 {
return n.childrenBlockIDs
}
func (n *DiskNode) printNode() {
fmt.Println("Printing Node")
fmt.Println("--------------")
for i := 0; i < len(n.getElements()); i++ {
fmt.Println(n.getElementAtIndex(i))
}
fmt.Println("**********************")
}
// splitLeafNode - Split leaf node
func (n *DiskNode) splitLeafNode() (*pairs, *DiskNode, *DiskNode, error) {
/**
LEAF SPLITTING WITHOUT CHILDREN ALGORITHM
If its full, then make two new child nodes without the middle node ( NODE CREATION WILL TAKE PLACE HERE)
Take out the middle element along with the two child nodes, Leaf Splitting no children Algorithm:
1. Pick middle element by using length of array/2, lets say its index i
2. Club all elements from 0 to i-1, and i+1 to len(array) and create new seperate nodes by inserting these 2 arrays into the respective keys[] of respective nodes
3. Since the current node is a leaf node, we do not need to worry about its children and we can leave them to be null for both
4. return middle,leftNode,rightNode
*/
elements := n.getElements()
midIndex := len(elements) / 2
middle := elements[midIndex]
// Now lets split elements array into 2 as we are splitting this node
elements1 := elements[0:midIndex]
elements2 := elements[midIndex+1:]
// Now lets construct new Nodes from these 2 element arrays
leftNode, err := newLeafNode(elements1, n.blockService)
if err != nil {
return nil, nil, nil, err
}
rightNode, err := newLeafNode(elements2, n.blockService)
if err != nil {
return nil, nil, nil, err
}
return middle, leftNode, rightNode, nil
}
//splitNonLeafNode - Split non leaf node
func (n *DiskNode) splitNonLeafNode() (*pairs, *DiskNode, *DiskNode, error) {
/**
NON-LEAF NODE SPLITTING ALGORITHM WITH CHILDREN MANIPULATION
If its full, sort it and make two new child nodes, Leaf Splitting with children Algorithm:
1. Pick middle element by using length of array/2, lets say its index i (Same as 3.4.1)
2. Club all elements from 0 to i-1, and i+1 to len(lkeys array) and create new seperate nodes
by inserting these 2 arrays into the respective keys[] of respective nodes (Same as 3.4.2)
3. For children[], split the current node's children array into 2 parts, part1 will be
from 0 to i, and part 2 will be from i+1 to len(children array), and insert them into
leftNode children, and rightNode children
NOTE : NODE CREATION WILL TAKE PLACE HERE
*/
elements := n.getElements()
midIndex := len(elements) / 2
middle := elements[midIndex]
// Now lets split elements array into 2 as we are splitting this node
elements1 := elements[0:midIndex]
elements2 := elements[midIndex+1:]
// Lets split the children
children := n.childrenBlockIDs
children1 := children[0 : midIndex+1]
children2 := children[midIndex+1:]
// Now lets construct new Nodes from these 2 element arrays
leftNode, err := newNodeWithChildren(elements1, children1, n.blockService)
if err != nil {
return nil, nil, nil, err
}
rightNode, err := newNodeWithChildren(elements2, children2, n.blockService)
if err != nil {
return nil, nil, nil, err
}
return middle, leftNode, rightNode, nil
}
// addPoppedUpElementIntoCurrentNodeAndUpdateWithNewChildren - Insert element received as a reaction
// from insert operation at child nodes
func (n *DiskNode) addPoppedUpElementIntoCurrentNodeAndUpdateWithNewChildren(element *pairs, leftNode *DiskNode, rightNode *DiskNode) {
/**
POPPED UP JOINING ALGORITHM
Insert into current Node, Popped up element and two child pointers insertion algorithm, Popped Up Joining Algorithm:
1. Insert element and sort the array
2. Now we need to discard 1 child pointer and insert 2 child pointers, Child Pointer Manipulation Algorithm :
3. Find index of inserted element in array, lets say that it is i
4. Now in the child pointer array, insert the left and right pointers at ith and i+1 th index
*/
//CHILD POINTER MANIPULATION ALGORITHM
insertionIndex := n.addElement(element)
n.setChildAtIndex(insertionIndex, leftNode)
//Shift remaining elements to the right and add this
n.shiftRemainingChildrenToRight(insertionIndex + 1)
n.setChildAtIndex(insertionIndex+1, rightNode)
}
// newLeafNode - Create a new leaf node without children
func newLeafNode(elements []*pairs, bs *blockService) (*DiskNode, error) {
node := &DiskNode{keys: elements, blockService: bs}
//persist the node to disk
err := bs.saveNewNodeToDisk(node)
if err != nil {
return nil, err
}
return node, nil
}
// newNodeWithChildren - Create a non leaf node with children
func newNodeWithChildren(elements []*pairs, childrenBlockIDs []uint64, bs *blockService) (*DiskNode, error) {
node := &DiskNode{keys: elements, childrenBlockIDs: childrenBlockIDs, blockService: bs}
//persist this node to disk
err := bs.saveNewNodeToDisk(node)
if err != nil {
return nil, err
}
return node, nil
}
// newRootNodeWithSingleElementAndTwoChildren - Create a new root node
func newRootNodeWithSingleElementAndTwoChildren(element *pairs, leftChildBlockID uint64,
rightChildBlockID uint64, bs *blockService) (*DiskNode, error) {
elements := []*pairs{element}
childrenBlockIDs := []uint64{leftChildBlockID, rightChildBlockID}
node := &DiskNode{keys: elements, childrenBlockIDs: childrenBlockIDs, blockService: bs}
//persist this node to disk
err := bs.updateRootNode(node)
if err != nil {
return nil, err
}
return node, nil
}
// getChildNodeForElement - Get Correct Traversal path for insertion
func (n *DiskNode) getChildNodeForElement(key string) (*DiskNode, error) {
/** CHILD NODE SEARCHING ALGORITHM
If this is not a leaf node, then find out the proper child node, Child Node Searching Algorithm:
1. Input : Value to be inserted, the current Node. Output : Pointer to the childnode
2. Since the list of values/elements is sorted, perform a binary or linear search to find the
first element greater than the value to be inserted, if such an element is found, return pointer at position i, else return last pointer ( ie. the last pointer)
*/
for i := 0; i < len(n.getElements()); i++ {
if key < n.getElementAtIndex(i).key {
return n.getChildAtIndex(i)
}
}
// This means that no element is found with value greater than the element to be inserted
// so we need to return the last child node
return n.getLastChildNode()
}
func (n *DiskNode) insert(value *pairs, bt *btree) (*pairs, *DiskNode, *DiskNode, error) {
if n.isLeaf() {
n.addElement(value)
if !n.hasOverFlown() {
// So lets store this updated node on disk
err := n.blockService.updateNodeToDisk(n)
if err != nil {
return nil, nil, nil, err
}
return nil, nil, nil, nil
}
if bt.isRootNode(n) {
poppedMiddleElement, leftNode, rightNode, err := n.splitLeafNode()
if err != nil {
return nil, nil, nil, err
}
//NOTE : NODE CREATION WILL TAKE PLACE HERE
newRootNode, err := newRootNodeWithSingleElementAndTwoChildren(poppedMiddleElement,
leftNode.blockID, rightNode.blockID, n.blockService)
if err != nil {
return nil, nil, nil, err
}
bt.setRootNode(newRootNode)
return nil, nil, nil, nil
}
// Split the node and return to parent function with pooped up element and left,right nodes
return n.splitLeafNode()
}
// Get the child Node for insertion
childNodeToBeInserted, err := n.getChildNodeForElement(value.key)
if err != nil {
return nil, nil, nil, err
}
poppedMiddleElement, leftNode, rightNode, err := childNodeToBeInserted.insert(value, bt)
if err != nil {
return nil, nil, nil, err
}
if poppedMiddleElement == nil {
// this means element has been inserted into the child and hence we do nothing
return poppedMiddleElement, leftNode, rightNode, nil
}
// Insert popped up element into current node along with updating the child pointers
// with new left and right nodes returned
n.addPoppedUpElementIntoCurrentNodeAndUpdateWithNewChildren(poppedMiddleElement, leftNode, rightNode)
if !n.hasOverFlown() {
// this means that element has been easily inserted into current parent Node
// without overflowing
err := n.blockService.updateNodeToDisk(n)
if err != nil {
return nil, nil, nil, err
}
// So lets store this updated node on disk
return nil, nil, nil, nil
}
// this means that the current parent node has overflown, we need to split this up
// and move the popped up element upwards if this is not the root
poppedMiddleElement, leftNode, rightNode, err = n.splitNonLeafNode()
if err != nil {
return nil, nil, nil, err
}
/**
If current node is not the root node return middle,leftNode,rightNode
else if current node == rootNode, Root Node Splitting Algorithm:
1. Create a new node with elements array as keys[0] = middle
2. children[0]=leftNode and children[1]=rightNode
3. Set btree.root=new node
4. return null,null,null
*/
if !bt.isRootNode(n) {
return poppedMiddleElement, leftNode, rightNode, nil
}
newRootNode, err := newRootNodeWithSingleElementAndTwoChildren(poppedMiddleElement,
leftNode.blockID, rightNode.blockID, n.blockService)
if err != nil {
return nil, nil, nil, err
}
//@Todo: Update the metadata somewhere so that we can read this new root node
//next time
bt.setRootNode(newRootNode)
return nil, nil, nil, nil
}
func (n *DiskNode) searchElementInNode(key string) (string, bool) {
for i := 0; i < len(n.getElements()); i++ {
if (n.getElementAtIndex(i)).key == key {
return n.getElementAtIndex(i).value, true
}
}
return "", false
}
func (n *DiskNode) search(key string) (string, error) {
/*
Algo:
1. Find key in current node, if this is leaf node, then return as not found
2. Then find the appropriate child node
3. goto step 1
*/
value, foundInCurrentNode := n.searchElementInNode(key)
if foundInCurrentNode {
return value, nil
}
if n.isLeaf() {
return "", nil
}
node, err := n.getChildNodeForElement(key)
if err != nil {
return "", err
}
return node.search(key)
}
// Insert - Insert value into Node
func (n *DiskNode) insertPair(value *pairs, bt *btree) error {
_, _, _, err := n.insert(value, bt)
if err != nil {
return err
}
return nil
}
func (n *DiskNode) getValue(key string) (string, error) {
return n.search(key)
}