-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfuse_depth.py
118 lines (92 loc) · 4.17 KB
/
fuse_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
__ __ _ _
| \/ | ___ _ __ ___ | \ | | __ ___ __
| |\/| |/ _ \| '_ \ / _ \| \| |/ _` \ \ / /
| | | | (_) | | | | (_) | |\ | (_| |\ V /
|_| |_|\___/|_| |_|\___/|_| \_|\__,_| \_/
Copyright (c) 2023 Nate Simon
License: MIT
Authors: Nate Simon and Anirudha Majumdar, Princeton University
Project Page: https://natesimon.github.io/mononav
The purpose of this script is to fuse depth images and poses into a 3D reconstruction.
Here, we use Open3D's tensor reconstruction system: the VoxelBlockGrid.
After fusion, the reconstruction is visualized (in addition to the camera poses), and saved to file.
"""
import numpy as np
import time
import os
import open3d as o3d
from PIL import Image
import numpy as np
import yaml
from utils.utils import *
#####################################################################
addPose = True
CONFIG_PATH = "config.yml"
with open(CONFIG_PATH, "r") as f:
config = yaml.safe_load(f)
data_dir = config["data_dir"] # parent directory to look for RGB images, and save depth images
source = "kinect" # meaning: crazyflie images have been undistorted to match kinect
rgb_dir = data_dir + "/" + source + "-rgb-images/"
depth_dir = data_dir + "/" + source + "-depth-images"
pose_dir = data_dir + "/crazyflie-poses/"
#####################################################################
# Initialize TSDF VoxelBlockGrid
depth_scale = config["VoxelBlockGrid"]["depth_scale"]
depth_max = config["VoxelBlockGrid"]["depth_max"]
trunc_voxel_multiplier = config["VoxelBlockGrid"]["trunc_voxel_multiplier"]
weight_threshold = config["weight_threshold"] # for planning and visualization (!! important !!)
device = config["VoxelBlockGrid"]["device"]
vbg = VoxelBlockGrid(depth_scale, depth_max, trunc_voxel_multiplier, o3d.core.Device(device))
#####################################################################
poses = [] # for visualization
t_start = time.time()
depth_files = [name for name in os.listdir(depth_dir) if os.path.isfile(os.path.join(depth_dir, name)) and name.endswith(".jpg")]
depth_files = sorted(depth_files)
# Get last frame
first_frame = split_filename(depth_files[0])
end_frame = split_filename(depth_files[-1])
for filename in depth_files:
# Get the frame number from the depth filename
frame_number = split_filename(filename)
print("Integrating frame %d/%d"%(frame_number,end_frame))
# Get rbg_file
rgb_file = rgb_dir + source + "_frame-%06d.rgb.jpg"%(frame_number)
# Read in camera pose
pose_file = data_dir + "/crazyflie-poses/crazyflie_frame-%06d.pose.txt"%(frame_number)
cam_pose = np.loadtxt(pose_file)
poses.append(cam_pose)
# Get color image with Pillow and convert to RGB
color = Image.open(rgb_file).convert("RGB") # load
# Integrate
depth_file = depth_dir + "/" + source + "_frame-%06d.depth.npy"%(frame_number)
depth_numpy = np.load(depth_file) # mm
vbg.integration_step(color, depth_numpy, cam_pose)
#####################################################################
# Print out timing information
t_end = time.time()
print("Time taken (s): ", t_end - t_start)
print("FPS: ", end_frame/(t_end - t_start))
pcd = vbg.vbg.extract_point_cloud(weight_threshold)
if addPose:
pose_lineset = get_poses_lineset(poses)
visualizer = o3d.visualization.Visualizer()
visualizer.create_window()
visualizer.add_geometry(pcd.to_legacy())
visualizer.add_geometry(pose_lineset)
for pose in poses:
# Add coordinate frame ( The x, y, z axis will be rendered as red, green, and blue arrows respectively.)
coordinate_frame = o3d.geometry.TriangleMesh.create_coordinate_frame().scale(0.5, center=(0, 0, 0))
visualizer.add_geometry(coordinate_frame.transform(pose))
visualizer.run()
visualizer.destroy_window()
else:
o3d.visualization.draw([pcd])
#####################################################################
npz_filename = os.path.join(data_dir, "vbg.npz")
ply_filename = os.path.join(data_dir, "pointcloud.ply")
print('Saving npz to {}...'.format(npz_filename))
print('Saving ply to {}...'.format(ply_filename))
vbg.vbg.save(npz_filename)
o3d.io.write_point_cloud(ply_filename, pcd.to_legacy())
print('Saving finished')