-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerate_primitives.py
128 lines (107 loc) · 4.44 KB
/
generate_primitives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
__ __ _ _
| \/ | ___ _ __ ___ | \ | | __ ___ __
| |\/| |/ _ \| '_ \ / _ \| \| |/ _` \ \ / /
| | | | (_) | | | | (_) | |\ | (_| |\ V /
|_| |_|\___/|_| |_|\___/|_| \_|\__,_| \_/
Copyright (c) 2023 Nate Simon
License: MIT
Authors: Nate Simon and Anirudha Majumdar, Princeton University
Project Page: https://natesimon.github.io/mononav
The purpose of this script is to generate a library of motion primitives (trajectories)
as described in the paper. Each motion primitive is defined by a sinusoidal yawrate profile,
which keeps the initial and final yawrates zero (for smooth chaining of primitives).
The trajectory library is visualized in trajlib/visualization.png.
By changing the trajectory constants and extension segment, you can generate a diverse variety of primitives.
If you change the trajlib_dir, be sure to update `trajlib_dir: 'utils/trajlib/'` in config.yml.
"""
import os
import numpy as np
import matplotlib.pyplot as plt
# Trajectory Constants
T = 1.0 # s, period of the primitive
V = 0.5 # m/s, forward speed
max_yawrate = 0.7 # rad/s
num_trajectories = 7 # number of trajectories should be ODD (e.g., 11) to ensure a straight line is included
num_commands = 65 # number of points in the trajectory
num_points = 8 # how many points should be in each primitive and each extension segment? (for primitive evaluation)
# Extension segment - straight line at the end of the trajectory (to encourage foresight)
x_ext = np.linspace(0., 1.0, num_points) # extension segment in the body frame (x = forward)
y_ext = np.zeros_like(x_ext)
ext = np.vstack((x_ext, y_ext))
# Assertion statements
assert num_trajectories % 2 == 1, "num_trajectories should be odd"
assert max_yawrate > 0, "max_yawrate should be positive"
# Derived quantities
omega = np.pi/T # 1/s, angular frequency
t = np.linspace(0,T,num_commands) # s, time vector
Avals = np.linspace(max_yawrate, -max_yawrate, num_trajectories) # rad/s, yawrate amplitude vector
# Create a subplot
fig, (ax2, ax1) = plt.subplots(2, 1)#, sharex=True)
fig.tight_layout()
traj_num = 0
trajlib_dir = './trajlib/'
# os.mkdir(trajlib_dir) if not os.path.exists(trajlib_dir) else None
if os.path.exists(trajlib_dir):
# Delete the existing trajectory library\
for filename in os.listdir(trajlib_dir):
file_path = os.path.join(trajlib_dir, filename)
os.remove(file_path)
else:
# Create the directory
os.mkdir(trajlib_dir)
trajlist = []
# For each yawrate profile, determine the associate xdot, ydot commands (which are used for the Crazyflie)
# numerically integrate to obtain x(t) and y(t) (for collision avoidance)
for A in Avals:
yawrate = A*np.sin(omega*t)
psi = A*(1 - np.cos(omega*t))
# Calculate xdot and ydot
xdot = V * np.cos(psi)
ydot = V * np.sin(psi)
# Numerical integration to obtain x(t) and y(t)
x = np.cumsum(xdot) * (t[1] - t[0])
y = np.cumsum(ydot) * (t[1] - t[0])
# rotate and add the extension segment
yaw = psi[-1]
R = np.array([[np.cos(yaw), -np.sin(yaw)],
[np.sin(yaw), np.cos(yaw)]])
ext_rot = np.matmul(R,ext) + np.array([[x[-1]],[y[-1]]])
# sample every num_points for efficient primitive evaluation
sample = int(num_commands/num_points)
x_sample = np.hstack((x[::sample], ext_rot[0,:]))
y_sample = np.hstack((y[::sample], ext_rot[1,:]))
trajectory = {
'xvals': x,
'yvals': y,
'yawvals': psi,
'x_sample': x_sample,
'y_sample': y_sample,
'yawrates': yawrate,
'times': t,
'period': T,
'forward_speed': V,
'amplitude': A
}
# Save to file
np.savez(trajlib_dir + 'traj-%02d.npz'%(traj_num), **trajectory)
traj_num += 1
# Top plot: yawrate and psi
ax2.plot(t, yawrate, label=r'$\dot{\psi}_{max}=$ %.2f' % A)
# Bottom plot
ax1.plot(x,y)#, label=r'$\dot{\psi}_{max}=$ %.2f' % A)
# Plot samples and distance
ax1.plot(x_sample, y_sample, 'o', color = 'red') # slice every other value
ax1.set_title('Trajectory @ V = %.2f m/s' % V)
ax1.set_xlabel('X position (m)')
ax1.set_ylabel('Y position (m)')
ax1.axis('equal')
#ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Yawrates rad/s')
ax2.set_title('Yawrates')
ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5))
# Suggested plotting adjustment
plt.subplots_adjust(0.125, 0.1, 0.75, 0.9, 0.2, 0.5)
plt.savefig(trajlib_dir + 'visualization.png',dpi=300)
plt.show()