-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathDatapath.sv
316 lines (292 loc) · 6.97 KB
/
Datapath.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
`timescale 1ns / 1ps
import Pipe_Buf_Reg_PKG::*;
module Datapath #(
parameter PC_W = 9, // Program Counter
parameter INS_W = 32, // Instruction Width
parameter RF_ADDRESS = 5, // Register File Address
parameter DATA_W = 32, // Data WriteData
parameter DM_ADDRESS = 9, // Data Memory Address
parameter ALU_CC_W = 4 // ALU Control Code Width
) (
input logic clk,
reset,
RegWrite,
MemtoReg, // Register file writing enable // Memory or ALU MUX
ALUsrc,
MemWrite, // Register file or Immediate MUX // Memroy Writing Enable
MemRead, // Memroy Reading Enable
Branch, // Branch Enable
input logic [ 1:0] ALUOp,
input logic [ALU_CC_W -1:0] ALU_CC, // ALU Control Code ( input of the ALU )
output logic [ 6:0] opcode,
output logic [ 6:0] Funct7,
output logic [ 2:0] Funct3,
output logic [ 1:0] ALUOp_Current,
output logic [ DATA_W-1:0] WB_Data, //Result After the last MUX
// Para depuração no tesbench:
output logic [4:0] reg_num, //número do registrador que foi escrito
output logic [DATA_W-1:0] reg_data, //valor que foi escrito no registrador
output logic reg_write_sig, //sinal de escrita no registrador
output logic wr, // write enable
output logic reade, // read enable
output logic [DM_ADDRESS-1:0] addr, // address
output logic [DATA_W-1:0] wr_data, // write data
output logic [DATA_W-1:0] rd_data // read data
);
logic [PC_W-1:0] PC, PCPlus4, Next_PC;
logic [INS_W-1:0] Instr;
logic [DATA_W-1:0] Reg1, Reg2;
logic [DATA_W-1:0] ReadData;
logic [DATA_W-1:0] SrcB, ALUResult;
logic [DATA_W-1:0] ExtImm, BrImm, Old_PC_Four, BrPC;
logic [DATA_W-1:0] WrmuxSrc;
logic PcSel; // mux select / flush signal
logic [1:0] FAmuxSel;
logic [1:0] FBmuxSel;
logic [DATA_W-1:0] FAmux_Result;
logic [DATA_W-1:0] FBmux_Result;
logic Reg_Stall; //1: PC fetch same, Register not update
if_id_reg A;
id_ex_reg B;
ex_mem_reg C;
mem_wb_reg D;
// next PC
adder #(9) pcadd (
PC,
9'b100,
PCPlus4
);
mux2 #(9) pcmux (
PCPlus4,
BrPC[PC_W-1:0],
PcSel,
Next_PC
);
flopr #(9) pcreg (
clk,
reset,
Next_PC,
Reg_Stall,
PC
);
instructionmemory instr_mem (
clk,
PC,
Instr
);
// IF_ID_Reg A;
always @(posedge clk) begin
if ((reset) || (PcSel)) // initialization or flush
begin
A.Curr_Pc <= 0;
A.Curr_Instr <= 0;
end
else if (!Reg_Stall) // stall
begin
A.Curr_Pc <= PC;
A.Curr_Instr <= Instr;
end
end
//--// The Hazard Detection Unit
HazardDetection detect (
A.Curr_Instr[19:15],
A.Curr_Instr[24:20],
B.rd,
B.MemRead,
Reg_Stall
);
// //Register File
assign opcode = A.Curr_Instr[6:0];
RegFile rf (
clk,
reset,
D.RegWrite,
D.rd,
A.Curr_Instr[19:15],
A.Curr_Instr[24:20],
WrmuxSrc,
Reg1,
Reg2
);
assign reg_num = D.rd;
assign reg_data = WrmuxSrc;
assign reg_write_sig = D.RegWrite;
// //sign extend
imm_Gen Ext_Imm (
A.Curr_Instr,
ExtImm
);
// ID_EX_Reg B;
always @(posedge clk) begin
if ((reset) || (Reg_Stall) || (PcSel)) // initialization or flush or generate a NOP if hazard
begin
B.ALUSrc <= 0;
B.MemtoReg <= 0;
B.RegWrite <= 0;
B.MemRead <= 0;
B.MemWrite <= 0;
B.ALUOp <= 0;
B.Branch <= 0;
B.Curr_Pc <= 0;
B.RD_One <= 0;
B.RD_Two <= 0;
B.RS_One <= 0;
B.RS_Two <= 0;
B.rd <= 0;
B.ImmG <= 0;
B.func3 <= 0;
B.func7 <= 0;
B.Curr_Instr <= A.Curr_Instr; //debug tmp
end else begin
B.ALUSrc <= ALUsrc;
B.MemtoReg <= MemtoReg;
B.RegWrite <= RegWrite;
B.MemRead <= MemRead;
B.MemWrite <= MemWrite;
B.ALUOp <= ALUOp;
B.Branch <= Branch;
B.Curr_Pc <= A.Curr_Pc;
B.RD_One <= Reg1;
B.RD_Two <= Reg2;
B.RS_One <= A.Curr_Instr[19:15];
B.RS_Two <= A.Curr_Instr[24:20];
B.rd <= A.Curr_Instr[11:7];
B.ImmG <= ExtImm;
B.func3 <= A.Curr_Instr[14:12];
B.func7 <= A.Curr_Instr[31:25];
B.Curr_Instr <= A.Curr_Instr; //debug tmp
end
end
//--// The Forwarding Unit
ForwardingUnit forunit (
B.RS_One,
B.RS_Two,
C.rd,
D.rd,
C.RegWrite,
D.RegWrite,
FAmuxSel,
FBmuxSel
);
// // //ALU
assign Funct7 = B.func7;
assign Funct3 = B.func3;
assign ALUOp_Current = B.ALUOp;
mux4 #(32) FAmux (
B.RD_One,
WrmuxSrc,
C.Alu_Result,
B.RD_One,
FAmuxSel,
FAmux_Result
);
mux4 #(32) FBmux (
B.RD_Two,
WrmuxSrc,
C.Alu_Result,
B.RD_Two,
FBmuxSel,
FBmux_Result
);
mux2 #(32) srcbmux (
FBmux_Result,
B.ImmG,
B.ALUSrc,
SrcB
);
alu alu_module (
FAmux_Result,
SrcB,
ALU_CC,
ALUResult
);
BranchUnit #(9) brunit (
B.Curr_Pc,
B.ImmG,
B.Branch,
ALUResult,
BrImm,
Old_PC_Four,
BrPC,
PcSel
);
// EX_MEM_Reg C;
always @(posedge clk) begin
if (reset) // initialization
begin
C.RegWrite <= 0;
C.MemtoReg <= 0;
C.MemRead <= 0;
C.MemWrite <= 0;
C.Pc_Imm <= 0;
C.Pc_Four <= 0;
C.Imm_Out <= 0;
C.Alu_Result <= 0;
C.RD_Two <= 0;
C.rd <= 0;
C.func3 <= 0;
C.func7 <= 0;
end else begin
C.RegWrite <= B.RegWrite;
C.MemtoReg <= B.MemtoReg;
C.MemRead <= B.MemRead;
C.MemWrite <= B.MemWrite;
C.Pc_Imm <= BrImm;
C.Pc_Four <= Old_PC_Four;
C.Imm_Out <= B.ImmG;
C.Alu_Result <= ALUResult;
C.RD_Two <= FBmux_Result;
C.rd <= B.rd;
C.func3 <= B.func3;
C.func7 <= B.func7;
C.Curr_Instr <= B.Curr_Instr; // debug tmp
end
end
// // // // Data memory
datamemory data_mem (
clk,
C.MemRead,
C.MemWrite,
C.Alu_Result[8:0],
C.RD_Two,
C.func3,
ReadData
);
assign wr = C.MemWrite;
assign reade = C.MemRead;
assign addr = C.Alu_Result[8:0];
assign wr_data = C.RD_Two;
assign rd_data = ReadData;
// MEM_WB_Reg D;
always @(posedge clk) begin
if (reset) // initialization
begin
D.RegWrite <= 0;
D.MemtoReg <= 0;
D.Pc_Imm <= 0;
D.Pc_Four <= 0;
D.Imm_Out <= 0;
D.Alu_Result <= 0;
D.MemReadData <= 0;
D.rd <= 0;
end else begin
D.RegWrite <= C.RegWrite;
D.MemtoReg <= C.MemtoReg;
D.Pc_Imm <= C.Pc_Imm;
D.Pc_Four <= C.Pc_Four;
D.Imm_Out <= C.Imm_Out;
D.Alu_Result <= C.Alu_Result;
D.MemReadData <= ReadData;
D.rd <= C.rd;
D.Curr_Instr <= C.Curr_Instr; //Debug Tmp
end
end
//--// The LAST Block
mux2 #(32) resmux (
D.Alu_Result,
D.MemReadData,
D.MemtoReg,
WrmuxSrc
);
assign WB_Data = WrmuxSrc;
endmodule