-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlec01.tex
258 lines (235 loc) · 8.32 KB
/
lec01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
\sectionwithdate{Definition of $F_\omega$}{1/16/2018}
\emph{Note:} In this section we skip the na\"ive formulation given by Prof. Crary
(without kinds) and immediately introduce kinds.
First, we define type constructors. We often refer to these simply as ``constructors.''
By convention, $\tau$ denotes a nullary constructor, but $c$ may be used in general
without fear.
\begin{bnf}
c, \tau \bnfeq
\alpha
\alt c \rightarrow c
\alt \forall(\alpha : \kappa). c
\alt \lambda(\alpha : \kappa). c
\alt c~c
\end{bnf}
$\alpha$ denotes a type variable. We use these in quantification and type abstraction.
It may be instantiated during application. $\kappa$ denotes a kind, which we now
define:
\begin{bnf}
\kappa \bnfeq
\mathtt{type}
\alt \kappa \rightarrow \kappa
\end{bnf}
Henceforth we use $\T$ to denote \texttt{type}.
Where would we be without terms to inhabit types?
\begin{bnf}
e \bnfeq x
\alt \lambda(x : \tau). e
\alt e ~ e
\alt \Lambda(\alpha : \kappa). e
\alt e[\tau]
\end{bnf}
Our context, $\Gamma$, may contain judgments pertaining to types and terms.
\begin{bnf}
\Gamma \bnfeq \varepsilon
\alt \Gamma, x : \tau
\alt \Gamma, \alpha : \kappa
\end{bnf}
Sometimes, for the latter judgment, you will see $\alpha :: \kappa$, but this is
not too important. Proceeding from this context, we first define inductively
the judgment that $\Gamma \vdash c : \kappa$
\begin{judgment}[Type kind]\thlabel{kind}
$\Gamma \vdash c : \kappa$
\[
\infer{\Gamma \vdash \alpha : \kappa}{\Gamma(\alpha) : \kappa}
\qquad
\infer{\Gamma \vdash c_1 \rightarrow c_2 : \T}
{\Gamma \vdash c_1 : \T
&\Gamma \vdash c_2 : \T
}
\qquad
\infer{\Gamma \vdash \forall(\alpha : \kappa).c : \T}
{\Gamma, \alpha : \kappa \vdash c : \T}
\]
\[
\infer{\Gamma \vdash c_1 ~ c_2 : \kappa'}
{\Gamma \vdash c_1 : \kappa \rightarrow \kappa'
&\Gamma \vdash c_2 : \kappa
}
\qquad
\infer{\Gamma \vdash \lambda(\alpha : \kappa).c : \kappa \to \kappa'}
{\Gamma, \alpha : \kappa \vdash c : \kappa'}
\]
\end{judgment}
Using this judgment, we next define the judgment $\Gamma \vdash e : \tau$.
\begin{judgment}[Term type]\thlabel{term}
$\Gamma \vdash e : \tau$
\[
\infer{\Gamma \vdash x : \tau}{\Gamma(x) = \tau}
\qquad
\infer{\Gamma \vdash \lambda(x : \tau).e : \tau \rightarrow \tau'}
{\Gamma, x : \tau \vdash e : \tau'
&\Gamma \vdash \tau : \kappa
}
\qquad
\infer{\Gamma \vdash e_1 ~ e_2 : \tau'}
{\Gamma \vdash e_1 : \tau \rightarrow \tau'
&\Gamma \vdash e_2 : \tau
}
\]
\[
\infer{\Gamma \vdash \Lambda (\alpha : \kappa).e : \forall (\alpha : \kappa).\tau}
{\Gamma, \alpha : \kappa \vdash e : \tau}
\qquad
\infer{\Gamma \vdash e[\tau] : [\tau / \alpha]\tau'}
{\Gamma \vdash e : \forall(\alpha : \kappa).\tau'
&\Gamma \vdash \tau : \kappa
}
\]
\end{judgment}
But these rules aren't sufficient: if
$f : \forall(\alpha : \T \rightarrow \T). \alpha~\int \rightarrow \unit$,
we would want \mbox{$f[\lambda(\beta : \T).\beta]~12 : \unit$}, but
currently this is not the case. We need a way to show
\mbox{$(\lambda \beta. \beta) \int \equiv \int$}. To do so,
we define a new judgment:
\[\Gamma \vdash c \equiv c' : \kappa\]
and add to \thref{term} the inference rule
\[\infer[(equivalence)]{\Gamma \vdash e : \tau'}
{\Gamma \vdash e : \tau
&\Gamma \vdash \tau \equiv \tau' : \T
}
\]
\begin{judgment}[Equivalence]\thlabel{equiv}
$\Gamma \vdash c \equiv c' : \kappa$
Equivalence rules
\[
\infer{\Gamma \vdash c \equiv c : \kappa}{\Gamma \vdash c : \kappa}
\qquad
\infer{\Gamma \vdash c' \equiv c : \kappa}{\Gamma \vdash c \equiv c' : \kappa}
\qquad
\infer{\Gamma \vdash c_1 \equiv c_3 : \kappa}
{\Gamma \vdash c_1 \equiv c_2 : \kappa
&\Gamma \vdash c_2 \equiv c_3 : \kappa
}
\]
Compatibility rules
\[
\infer{\Gamma \vdash (c_1 \rightarrow c_2) \equiv (c_1' \rightarrow c_2') : \T}
{\Gamma \vdash c_1 \equiv c_1' : \T
&\Gamma \vdash c_2 \equiv c_2' : \T
}
\qquad
\infer{\Gamma \vdash \forall(\alpha : \kappa).c \equiv \forall(\alpha : \kappa).c' : \T}
{\Gamma, \alpha : \kappa \vdash c \equiv c' : \T}
\]
\[
\infer{\Gamma \vdash \lambda(\alpha : \kappa).c \equiv
\lambda (\alpha : \kappa.c') \equiv \kappa \rightarrow \kappa'}
{\Gamma, \alpha : \kappa \vdash c \equiv c' : \kappa'}
\qquad
\infer{\Gamma \vdash c_1 ~ c_2 \vdash c_1'~c_2' : \kappa'}
{\Gamma \vdash c_1 \equiv c_1' : \kappa \rightarrow \kappa'
&\Gamma \vdash c_2 \equiv c_2' : \kappa
}
\]
\end{judgment}
These rules defined a congruence relation. We haven't yet added the interesting rules.
Note the enforcement that some constructors be types ($\T$), since they certainly
may not be $\lambda$-abstractions. At this point in the semester, the $\kappa$ constraints
may be omitted, since they are uniquely determined by the \textbf{regularity conditions}
(assuming $\vdash \Gamma~\mathsf{ok}$):
\begin{itemize}
\item If $\Gamma \vdash c_1 \equiv c_2 : \kappa$, then $\Gamma \vdash c_1 : \kappa$
and $\Gamma \vdash c_2 : \kappa$.
\item If $\Gamma \vdash e : \tau$, then $\Gamma \vdash \tau : \T$.
\end{itemize}
Now for a more interesting rules to add to \thref{equiv}:
\[
\infer[(\beta)]
{\Gamma \vdash (\lambda (\alpha : \kappa). c') c \equiv [c / \alpha]c' : \kappa'}
{\Gamma \vdash c : \kappa
& \Gamma, \alpha : \kappa \vdash c' : \kappa'
}
\]
We can prove:
\[
\infer
{(\lambda \beta. \beta)~\int \rightarrow \unit \equiv \int \rightarrow \unit : \T}
{\infer
{(\lambda \beta. \beta)~\int \equiv \int : \T}
{\infer{\beta : \T \vdash \beta : \T}{}
&\infer{\int : \T}{}
}
}
\]
What about $\eta$-expansion? something along the lines of:
\[
\infer[(\eta)]
{\Gamma \vdash c \equiv \lambda (\alpha : \kappa). c~\alpha : \kappa \rightarrow \kappa'}
{\Gamma \vdash c : \kappa \rightarrow \kappa'}
\]
We want something more general, akin to running an experiment on two constructors of
function kind. (Adding to \thref{equiv}.)
\[
\infer[(extensionality)]
{\Gamma \vdash c_1 \equiv c_2 : \kappa \rightarrow \kappa'}
{\Gamma, \alpha : \kappa \vdash c_1~\alpha \equiv c_2~\alpha : \kappa'}
\]
Exercise: prove $\eta$ from this rule.
\subsection{$F_\omega$ plus products}
\begin{bnf}
\kappa \bnfeq
\cdots \alt \kappa \times \kappa\\
c \bnfeq \cdots \alt \langle c, c \rangle
\alt \pi_1c
\alt \pi_2c
\end{bnf}
Adding to \thref{kind}:
\[
\infer{\Gamma \vdash \langle c_1, c_2 \rangle : \kappa_1 \times \kappa_2}
{\Gamma \vdash c_1 : \kappa_1
&\Gamma \vdash c_2 : \kappa_2
}
\qquad
\infer{\Gamma \vdash \pi_i~c:\kappa_i}
{\Gamma \vdash c : \kappa_1 \times \kappa_2}
\]
Adding to \thref{equiv}, the compatibility rules:
\[
\infer{\Gamma \vdash \langle c_1, c_2 \rangle \equiv \langle c_1', c_2' \rangle
: \kappa_1 \times \kappa_2}
{\Gamma \vdash c_1 \equiv c_1' : \kappa' & \Gamma \vdash c_2 \equiv c_2' : \kappa_2}
\qquad
\infer{\Gamma \vdash \pi_i~c_1 \equiv \pi_i~c_2 : \kappa_i}
{\Gamma \vdash c_1 \equiv c_2 : \kappa_1 \times \kappa_2}
\]
Adding to \thref{equiv}, the ``interesting'' rules:
\[
\infer[(\beta_\pi)]
{\Gamma \vdash \pi_1 \langle c_1, c_2 \rangle \equiv c_1 : \kappa_i}
{\Gamma \vdash c_1 : \kappa_1 & \Gamma \vdash c_2 : \kappa_2}
\qquad
\infer[(extensionality_\pi)]
{\Gamma \vdash c_1 \equiv c_2 : \kappa_1 \times \kappa_2}
{\Gamma \vdash \pi_i~c_1 \equiv \pi_i~c_2 : \kappa_i}
\]
\subsection{Motivation}
All of this is useful in the understanding of ML's module system. For example, we wish to
view the type components of a module as a singular type componen\emph{ent}, for which we
must understand a pair of types. Furthermore, functors may be seen as creating type constructors,
for example:
\begin{verbatim}
functor Foo (type t) = struct
type u = t * t
end
\end{verbatim}
which may be represented as $\lambda (t:\T) \langle t \times t, \ldots \rangle$.
\subsection{Remarks}
\begin{itemize}
\item We must specify a separate level (kinds) rather than just describing types with types;
this is described in the
\href{https://en.wikipedia.org/wiki/Burali-Forti_paradox}{Burali-Forti paradox}.
\item Counting binders from the inside-out is called de Brujin indices, but counting from
the outside-in is called de Brujin \emph{levels}, which ``no one uses.''
\end{itemize}