forked from chewxy/math32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pow.go
139 lines (129 loc) · 2.52 KB
/
pow.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
package math32
import "math"
func isOddInt(x float32) bool {
xi, xf := Modf(x)
return xf == 0 && int32(xi)&1 == 1
}
// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
// Pow(x, ±0) = 1 for any x
// Pow(1, y) = 1 for any y
// Pow(x, 1) = x for any x
// Pow(NaN, y) = NaN
// Pow(x, NaN) = NaN
// Pow(±0, y) = ±Inf for y an odd integer < 0
// Pow(±0, -Inf) = +Inf
// Pow(±0, +Inf) = +0
// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
// Pow(±0, y) = ±0 for y an odd integer > 0
// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
// Pow(-1, ±Inf) = 1
// Pow(x, +Inf) = +Inf for |x| > 1
// Pow(x, -Inf) = +0 for |x| > 1
// Pow(x, +Inf) = +0 for |x| < 1
// Pow(x, -Inf) = +Inf for |x| < 1
// Pow(+Inf, y) = +Inf for y > 0
// Pow(+Inf, y) = +0 for y < 0
// Pow(-Inf, y) = Pow(-0, -y)
// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y float32) float32 {
switch {
case y == 0 || x == 1:
return 1
case y == 1:
return x
case y == 0.5:
return Sqrt(x)
case y == -0.5:
return 1 / Sqrt(x)
case IsNaN(x) || IsNaN(y):
return NaN()
case x == 0:
switch {
case y < 0:
if isOddInt(y) {
return Copysign(Inf(1), x)
}
return Inf(1)
case y > 0:
if isOddInt(y) {
return x
}
return 0
}
case IsInf(y, 0):
switch {
case x == -1:
return 1
case (Abs(x) < 1) == IsInf(y, 1):
return 0
default:
return Inf(1)
}
case IsInf(x, 0):
if IsInf(x, -1) {
return Pow(1/x, -y) // Pow(-0, -y)
}
switch {
case y < 0:
return 0
case y > 0:
return Inf(1)
}
}
absy := y
flip := false
if absy < 0 {
absy = -absy
flip = true
}
yi, yf := Modf(absy)
if yf != 0 && x < 0 {
return NaN()
}
if yi >= 1<<31 {
return Exp(y * Log(x))
}
// ans = a1 * 2**ae (= 1 for now).
a1 := float32(1.0)
ae := 0
// ans *= x**yf
if yf != 0 {
if yf > 0.5 {
yf--
yi++
}
a1 = Exp(yf * Log(x))
}
// ans *= x**yi
// by multiplying in successive squarings
// of x according to bits of yi.
// accumulate powers of two into exp.
x1, xe := Frexp(x)
for i := int32(yi); i != 0; i >>= 1 {
if i&1 == 1 {
a1 *= x1
ae += xe
}
x1 *= x1
xe <<= 1
if x1 < .5 {
x1 += x1
xe--
}
}
// ans = a1*2**ae
// if flip { ans = 1 / ans }
// but in the opposite order
if flip {
a1 = 1 / a1
ae = -ae
}
return Ldexp(a1, ae)
}
func Pow10(e int) float32 {
return float32(math.Pow10(e))
}