-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainAnn.py
70 lines (48 loc) · 1.98 KB
/
trainAnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense,Dropout, Activation
from keras.optimizers import SGD
def create_ann(hidden_layer_dimension, input_dimension, output_len):
'''Implementacija vestacke neuronske mreze sa 784 neurona na uloznom sloju,
128 neurona u skrivenom sloju i 10 neurona na izlazu. Aktivaciona funkcija je sigmoid.
'''
ann = Sequential()
ann.add(Dense(hidden_layer_dimension, input_dim=input_dimension, activation='tanh'))
ann.add(Dense(output_len, activation='tanh'))
#ann.add(Dense(input_dimension, init='uniform', input_dim=input_dimension))
#ann.add(Activation('softmax'))
#ann.compile(optimizer='sgd', loss='mse')
return ann
def train_ann(ann, input_list, output_list):
'''Obucavanje vestacke neuronske mreze'''
input_list = np.array(input_list, np.float32) # dati ulazi
output_list = np.array(output_list, np.float32) # zeljeni izlazi za date ulaze
# definisanje parametra algoritma za obucavanje
sgd = SGD(lr=0.01, momentum=0.9)
ann.compile(loss='mean_squared_error', optimizer=sgd)
# obucavanje neuronske mreze
ann.fit(input_list, output_list, nb_epoch=100, batch_size=128, verbose = 1, shuffle=True, show_accuracy = True)
return ann
def prepareDataForAnn(games):
input_list = []
output_list = []
for row in games:
temp = []
for idx,val in enumerate(row):
if idx==1:
output_list.append(val)
else:
temp.append(val)
input_list.append(temp)
#print input_list
return input_list, output_list
def convertOutput(output_list):
output = []
for i in range(0,len(output_list)):
if output_list[i] == 1:
output.append([1,0,0])
elif output_list[i] == 0:
output.append([0,1,0])
else:
output.append([0,0,1])
return output