forked from salesforce/awd-lstm-lm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
finetune.py
234 lines (203 loc) · 9.83 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import time
import math
import numpy as np
np.random.seed(331)
import torch
import torch.nn as nn
import data
import model
from utils import batchify, get_batch, repackage_hidden
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='data/penn/',
help='location of the data corpus')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=400,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=1150,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=3,
help='number of layers')
parser.add_argument('--lr', type=float, default=30,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=8000,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=80, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--tied', action='store_false',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--cuda', action='store_false',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash+'.pt',
help='path to save the final model')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
corpus = data.Corpus(args.data)
eval_batch_size = 10
test_batch_size = 1
train_data = batchify(corpus.train, args.batch_size, args)
val_data = batchify(corpus.valid, eval_batch_size, args)
test_data = batchify(corpus.test, test_batch_size, args)
###############################################################################
# Build the model
###############################################################################
ntokens = len(corpus.dictionary)
model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.dropouth, args.dropouti, args.dropoute, args.wdrop, args.tied)
if args.cuda:
model.cuda()
total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in model.parameters())
print('Args:', args)
print('Model total parameters:', total_params)
criterion = nn.CrossEntropyLoss()
###############################################################################
# Training code
###############################################################################
def evaluate(data_source, batch_size=10):
# Turn on evaluation mode which disables dropout.
if args.model == 'QRNN': model.reset()
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def train():
# Turn on training mode which enables dropout.
if args.model == 'QRNN': model.reset()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
batch, i = 0, 0
while i < train_data.size(0) - 1 - 1:
bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
# Prevent excessively small or negative sequence lengths
seq_len = max(5, int(np.random.normal(bptt, 5)))
# There's a very small chance that it could select a very long sequence length resulting in OOM
seq_len = min(seq_len, args.bptt + 10)
lr2 = optimizer.param_groups[0]['lr']
optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt
model.train()
data, targets = get_batch(train_data, i, args, seq_len=seq_len)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
optimizer.zero_grad()
output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True)
raw_loss = criterion(output.view(-1, ntokens), targets)
loss = raw_loss
# Activiation Regularization
loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:])
# Temporal Activation Regularization (slowness)
loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:])
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
total_loss += raw_loss.data
optimizer.param_groups[0]['lr'] = lr2
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
###
batch += 1
i += seq_len
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
# Loop over epochs.
lr = args.lr
stored_loss = evaluate(val_data)
best_val_loss = []
# At any point you can hit Ctrl + C to break out of training early.
try:
#optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
if 't0' in optimizer.param_groups[0]:
tmp = {}
for prm in model.parameters():
tmp[prm] = prm.data.clone()
prm.data = optimizer.state[prm]['ax'].clone()
val_loss2 = evaluate(val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss2, math.exp(val_loss2)))
print('-' * 89)
if val_loss2 < stored_loss:
with open(args.save, 'wb') as f:
torch.save(model, f)
print('Saving Averaged!')
stored_loss = val_loss2
for prm in model.parameters():
prm.data = tmp[prm].clone()
if (len(best_val_loss)>args.nonmono and val_loss2 > min(best_val_loss[:-args.nonmono])):
print('Done!')
import sys
sys.exit(1)
optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay)
#optimizer.param_groups[0]['lr'] /= 2.
best_val_loss.append(val_loss2)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
# Run on test data.
test_loss = evaluate(test_data, test_batch_size)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)