forked from SeanNaren/deepspeech.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
345 lines (306 loc) · 17.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import argparse
import json
import os
import random
import time
import numpy as np
import torch.distributed as dist
import torch.utils.data.distributed
from apex import amp
from apex.parallel import DistributedDataParallel
from warpctc_pytorch import CTCLoss
from data.data_loader import AudioDataLoader, SpectrogramDataset, BucketingSampler, DistributedBucketingSampler
from decoder import GreedyDecoder
from logger import VisdomLogger, TensorBoardLogger
from model import DeepSpeech, supported_rnns
from test import evaluate
from utils import reduce_tensor, check_loss
parser = argparse.ArgumentParser(description='DeepSpeech training')
parser.add_argument('--train-manifest', metavar='DIR',
help='path to train manifest csv', default='data/train_manifest.csv')
parser.add_argument('--val-manifest', metavar='DIR',
help='path to validation manifest csv', default='data/val_manifest.csv')
parser.add_argument('--sample-rate', default=16000, type=int, help='Sample rate')
parser.add_argument('--batch-size', default=20, type=int, help='Batch size for training')
parser.add_argument('--num-workers', default=4, type=int, help='Number of workers used in data-loading')
parser.add_argument('--labels-path', default='labels.json', help='Contains all characters for transcription')
parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram in seconds')
parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram in seconds')
parser.add_argument('--window', default='hamming', help='Window type for spectrogram generation')
parser.add_argument('--hidden-size', default=800, type=int, help='Hidden size of RNNs')
parser.add_argument('--hidden-layers', default=5, type=int, help='Number of RNN layers')
parser.add_argument('--rnn-type', default='gru', help='Type of the RNN. rnn|gru|lstm are supported')
parser.add_argument('--epochs', default=70, type=int, help='Number of training epochs')
parser.add_argument('--cuda', dest='cuda', action='store_true', help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=3e-4, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--max-norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients')
parser.add_argument('--learning-anneal', default=1.1, type=float, help='Annealing applied to learning rate every epoch')
parser.add_argument('--silent', dest='silent', action='store_true', help='Turn off progress tracking per iteration')
parser.add_argument('--checkpoint', dest='checkpoint', action='store_true', help='Enables checkpoint saving of model')
parser.add_argument('--checkpoint-per-batch', default=0, type=int, help='Save checkpoint per batch. 0 means never save')
parser.add_argument('--visdom', dest='visdom', action='store_true', help='Turn on visdom graphing')
parser.add_argument('--tensorboard', dest='tensorboard', action='store_true', help='Turn on tensorboard graphing')
parser.add_argument('--log-dir', default='visualize/deepspeech_final', help='Location of tensorboard log')
parser.add_argument('--log-params', dest='log_params', action='store_true', help='Log parameter values and gradients')
parser.add_argument('--id', default='Deepspeech training', help='Identifier for visdom/tensorboard run')
parser.add_argument('--save-folder', default='models/', help='Location to save epoch models')
parser.add_argument('--model-path', default='models/deepspeech_final.pth',
help='Location to save best validation model')
parser.add_argument('--continue-from', default='', help='Continue from checkpoint model')
parser.add_argument('--finetune', dest='finetune', action='store_true',
help='Finetune the model from checkpoint "continue_from"')
parser.add_argument('--augment', dest='augment', action='store_true', help='Use random tempo and gain perturbations.')
parser.add_argument('--noise-dir', default=None,
help='Directory to inject noise into audio. If default, noise Inject not added')
parser.add_argument('--noise-prob', default=0.4, help='Probability of noise being added per sample')
parser.add_argument('--noise-min', default=0.0,
help='Minimum noise level to sample from. (1.0 means all noise, not original signal)', type=float)
parser.add_argument('--noise-max', default=0.5,
help='Maximum noise levels to sample from. Maximum 1.0', type=float)
parser.add_argument('--no-shuffle', dest='no_shuffle', action='store_true',
help='Turn off shuffling and sample from dataset based on sequence length (smallest to largest)')
parser.add_argument('--no-sortaGrad', dest='no_sorta_grad', action='store_true',
help='Turn off ordering of dataset on sequence length for the first epoch.')
parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True,
help='Turn off bi-directional RNNs, introduces lookahead convolution')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:1550', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--rank', default=0, type=int,
help='The rank of this process')
parser.add_argument('--gpu-rank', default=None,
help='If using distributed parallel for multi-gpu, sets the GPU for the process')
parser.add_argument('--seed', default=123456, type=int, help='Seed to generators')
parser.add_argument('--opt-level', type=str)
parser.add_argument('--keep-batchnorm-fp32', type=str, default=None)
parser.add_argument('--loss-scale', type=str, default=None)
torch.manual_seed(123456)
torch.cuda.manual_seed_all(123456)
def to_np(x):
return x.cpu().numpy()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
args = parser.parse_args()
# Set seeds for determinism
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
args.distributed = args.world_size > 1
main_proc = True
device = torch.device("cuda" if args.cuda else "cpu")
if args.distributed:
if args.gpu_rank:
torch.cuda.set_device(int(args.gpu_rank))
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
main_proc = args.rank == 0 # Only the first proc should save models
save_folder = args.save_folder
os.makedirs(save_folder, exist_ok=True) # Ensure save folder exists
loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor(
args.epochs)
best_wer = None
if main_proc and args.visdom:
visdom_logger = VisdomLogger(args.id, args.epochs)
if main_proc and args.tensorboard:
tensorboard_logger = TensorBoardLogger(args.id, args.log_dir, args.log_params)
avg_loss, start_epoch, start_iter, optim_state = 0, 0, 0, None
if args.continue_from: # Starting from previous model
print("Loading checkpoint model %s" % args.continue_from)
package = torch.load(args.continue_from, map_location=lambda storage, loc: storage)
model = DeepSpeech.load_model_package(package)
labels = model.labels
audio_conf = model.audio_conf
if not args.finetune: # Don't want to restart training
optim_state = package['optim_dict']
start_epoch = int(package.get('epoch', 1)) - 1 # Index start at 0 for training
start_iter = package.get('iteration', None)
if start_iter is None:
start_epoch += 1 # We saved model after epoch finished, start at the next epoch.
start_iter = 0
else:
start_iter += 1
avg_loss = int(package.get('avg_loss', 0))
loss_results, cer_results, wer_results = package['loss_results'], package['cer_results'], \
package['wer_results']
best_wer = wer_results[start_epoch]
if main_proc and args.visdom: # Add previous scores to visdom graph
visdom_logger.load_previous_values(start_epoch, package)
if main_proc and args.tensorboard: # Previous scores to tensorboard logs
tensorboard_logger.load_previous_values(start_epoch, package)
else:
with open(args.labels_path) as label_file:
labels = str(''.join(json.load(label_file)))
audio_conf = dict(sample_rate=args.sample_rate,
window_size=args.window_size,
window_stride=args.window_stride,
window=args.window,
noise_dir=args.noise_dir,
noise_prob=args.noise_prob,
noise_levels=(args.noise_min, args.noise_max))
rnn_type = args.rnn_type.lower()
assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
model = DeepSpeech(rnn_hidden_size=args.hidden_size,
nb_layers=args.hidden_layers,
labels=labels,
rnn_type=supported_rnns[rnn_type],
audio_conf=audio_conf,
bidirectional=args.bidirectional)
decoder = GreedyDecoder(labels)
train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
normalize=True, augment=args.augment)
test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
normalize=True, augment=False)
if not args.distributed:
train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
else:
train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
num_replicas=args.world_size, rank=args.rank)
train_loader = AudioDataLoader(train_dataset,
num_workers=args.num_workers, batch_sampler=train_sampler)
test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
num_workers=args.num_workers)
if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
print("Shuffling batches for the following epochs")
train_sampler.shuffle(start_epoch)
model = model.to(device)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters, lr=args.lr,
momentum=args.momentum, nesterov=True, weight_decay=1e-5)
if optim_state is not None:
optimizer.load_state_dict(optim_state)
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
keep_batchnorm_fp32=args.keep_batchnorm_fp32,
loss_scale=args.loss_scale)
if args.distributed:
model = DistributedDataParallel(model)
print(model)
print("Number of parameters: %d" % DeepSpeech.get_param_size(model))
criterion = CTCLoss()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
for epoch in range(start_epoch, args.epochs):
model.train()
end = time.time()
start_epoch_time = time.time()
for i, (data) in enumerate(train_loader, start=start_iter):
if i == len(train_sampler):
break
inputs, targets, input_percentages, target_sizes = data
input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.to(device)
out, output_sizes = model(inputs, input_sizes)
out = out.transpose(0, 1) # TxNxH
float_out = out.float() # ensure float32 for loss
loss = criterion(float_out, targets, output_sizes, target_sizes).to(device)
loss = loss / inputs.size(0) # average the loss by minibatch
if args.distributed:
loss = loss.to(device)
loss_value = reduce_tensor(loss, args.world_size).item()
else:
loss_value = loss.item()
# Check to ensure valid loss was calculated
valid_loss, error = check_loss(loss, loss_value)
if valid_loss:
optimizer.zero_grad()
# compute gradient
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
optimizer.step()
else:
print(error)
print('Skipping grad update')
loss_value = 0
avg_loss += loss_value
losses.update(loss_value, inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if not args.silent:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
(epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses))
if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0 and main_proc:
file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth' % (save_folder, epoch + 1, i + 1)
print("Saving checkpoint model to %s" % file_path)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i,
loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss),
file_path)
del loss, out, float_out
avg_loss /= len(train_sampler)
epoch_time = time.time() - start_epoch_time
print('Training Summary Epoch: [{0}]\t'
'Time taken (s): {epoch_time:.0f}\t'
'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=avg_loss))
start_iter = 0 # Reset start iteration for next epoch
with torch.no_grad():
wer, cer, output_data = evaluate(test_loader=test_loader,
device=device,
model=model,
decoder=decoder,
target_decoder=decoder)
loss_results[epoch] = avg_loss
wer_results[epoch] = wer
cer_results[epoch] = cer
print('Validation Summary Epoch: [{0}]\t'
'Average WER {wer:.3f}\t'
'Average CER {cer:.3f}\t'.format(
epoch + 1, wer=wer, cer=cer))
values = {
'loss_results': loss_results,
'cer_results': cer_results,
'wer_results': wer_results
}
if args.visdom and main_proc:
visdom_logger.update(epoch, values)
if args.tensorboard and main_proc:
tensorboard_logger.update(epoch, values, model.named_parameters())
values = {
'Avg Train Loss': avg_loss,
'Avg WER': wer,
'Avg CER': cer
}
if main_proc and args.checkpoint:
file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results),
file_path)
# anneal lr
for g in optimizer.param_groups:
g['lr'] = g['lr'] / args.learning_anneal
print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))
if main_proc and (best_wer is None or best_wer > wer):
print("Found better validated model, saving to %s" % args.model_path)
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results)
, args.model_path)
best_wer = wer
avg_loss = 0
if not args.no_shuffle:
print("Shuffling batches...")
train_sampler.shuffle(epoch)