-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathL2F_1yr.html
969 lines (595 loc) · 23.9 KB
/
L2F_1yr.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
<!DOCTYPE html>
<html>
<head>
<title>L2F</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
name:opening
**Lifelong Learning Forests (JHU)**<br>
[Joshua T. Vogelstein](https://neurodata.io) | Carey E. Priebe | Raman Arora <br>
Cencheng Shen | Kent Kiehl | Bruce Rosen
<!-- {[BME](https://www.bme.jhu.edu/),[ICM](https://icm.jhu.edu/),[CIS](http://cis.jhu.edu/),[KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/) -->
<a href="https://neurodata.io"><img src="images/neurodata_purple.png" style="height:430px;"/></a>
<!-- <img src="images/funding/jhu_bme_blue.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KNDI.png" STYLE="HEIGHT:95px;"/> -->
<!-- <font color="grey"></font> -->
.foot[[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)]
---
class: center, middle
<video width="320" height="650" controls>
<source src="images/lion_walking.mp4" type="video/mp4">
</video>
---
### Last Time
<br><br><br><br>
``` "Demonstrate that Randomer Forests can do Lifelong Learning" ```
-- Hava, DARPA PM
---
## Outline
- What is lifelong learning?
- Can Randomer Forests do it (even conceptually)?
- Does it work on real data?
---
class: middle
## .center[.k[What is Lifelong Learning?]]
---
### Lifelong Learning Machines
From *Lifelong Machine Learning* (2016):
- The learner has performed a sequence of J learning tasks.
- The tasks can be of different types and from different domains.
- When faced with the (J + 1)th task with its data,
the learner can leverage the past knowledge in the knowledge base (KB) to help learn.
- The objective of an L2M is to optimize the performance on all the tasks.
- KB maintains the existing knowledge and updates with new knowledge from the (J+1)th task.
--
What is a .r[task], .r[learner], .r[knowledge base]?
---
### What is a Task?
A task is a sextuple $\mathcal{T} = \lbrace \mathcal{Z}, \mathcal{A}, P, \Phi, \ell, \mathbb{R} \rbrace$
| Object | Space | Definition |
|:--- |:--- |
| $z$ | $ \mathcal{Z}$ | measurements
| $a$ | $\mathcal{A}$ | actions
| $P: \Omega \to \mathcal{Z}$ | $ \mathcal{P}$ | density
| $\phi: \mathcal{Z} \to \mathcal{A}$ | $\Phi$ | decision rule
| $\ell: \Phi \times \mathcal{A} \to \mathbb{R}_+$ | $\mathcal{L}$ | loss
| $\mathbb{R}: \mathcal{L} \times \mathcal{P} \times \Phi \to \mathbb{R}_+$ | $\mathcal{R}$ | risk
<!-- - Bayes Optimal (Oracle) decision rule for $\mathcal{T}$: -->
<!-- $$\phi\_* = \arg \min \, \mathbb{R}\_{\ell}(P,\phi) \quad s.t. \, \phi \in \Phi$$ -->
<!-- - Goal: choose $\phi_*$ -->
<!-- \arg \min_{\phi \in \Phi} \mathbb{R}_\ell(P,\phi).$$ -->
---
### Example tasks
- Parameter estimation (estimate mean)
- Hypothesis testing (mean $\neq$ 0)
- Dimensionality reduction (isomap)
- Classification / regression (linear regression)
- Forecasting (kalman filter)
- Control (reinforcement learning)
- Density estimation (kernel density estimate)
- Clustering (k-means)
---
### What is Learning?
| Object | Definition |
|:--- |:--- |
| learners | $f_t : \mathcal{Z}^t \to \Phi$
| loss | $ \ell(\hat{\phi}\_{T}(z\_t),a\_t)$
| oracle loss | $ \inf\_{\phi \in \Phi} \ell({\phi}(z\_t),a\_t) = \ell({\phi}\_*(z\_t),a\_t)$
| excess loss | $\hat{\epsilon}\_T(f) = \ell(\hat{\phi}\_{T}(z\_t),a\_t) - \ell(\phi\_*(z\_t),a\_t) $
| regret | $\hat{R}\_T(f) = \frac{1}{T}\sum\_{t=1}^T \hat{\epsilon}\_T(f)$
A learner is said to .r[learn] whenever $\mathbb{E} [\hat{\epsilon}\_T(f)] \to 0$ as $T \to \infty$.
Alternatively, whenever $\mathbb{E} [\hat{R}\_T(f)] \to 0$ as $T \to \infty$.
<!-- Goal: choose $f = f_1, f_2, \ldots $ such that for any $\epsilon, \delta > 0$ and some $P \in \mathcal{P}$: -->
<!-- $$ \mathbb{P} [ \hat{R}\_T(f) \leq \epsilon] > 1 - \delta $$ -->
<!-- $\varepsilon_n \rightarrow 0$ -->
<!-- | $f_n: \mathcal{Z}^n \times \mathcal{L} \to \mathcal{G}$ | $\mathcal{F}$ | .r[learner] -->
---
### What is Lifelong Learning?
Given
- $J$ tasks: $\mathcal{T}_j, j = 1,\ldots, J$,
- and $T_j$ measurements from each task $\mathcal{D}_j = (z_t,j_t) \, \forall j_t = j$
- where each task can differ by any of $\lbrace \mathcal{Z}\_j, \mathcal{A}\_j, P\_j, \Phi\_j, \ell\_j, \mathbb{R}\_j \rbrace$
- and $T = \sum_j T\_j$.
---
### What is Lifelong Learning?
| Regret | Definition |
|:--- |:--- |
| Task | $\hat{R}\_{T\_j}^j(f) = \sum\_{t: j\_t = j} \ell\_j(\hat{\phi}\_{T\_j}(z\_t),a\_t) - \ell\_j(\phi\_*(z\_t),a\_t) $
| Lifelong | $\hat{R}\_T^j(f) = \sum\_{t: j\_t = j} \ell\_j(\hat{\phi}\_{T}(z\_t),a\_t) - \ell\_j(\phi\_*(z\_t),a\_t) $
| Relative | $\hat{S}^j\_T(f) = \hat{R}\_T^j(f) / \hat{R}\_{T\_j}^j(f)$
| Cumulative Relative | $\hat{S}\_T(f) = \frac{1}{J} \sum\_{j=1}^J \hat{S}^j\_T(f)$
<br>
A .r[lifelong learner] is said to lifelong learn whenever <br> $\mathbb{E}[\hat{S}\_T(f)] \to c < 1$ as $J,T \to \infty$.
--
On average, data from other tasks much improve performance relative to not having seen those data.
---
### What is .r[Not] Lifelong Learning?
- Online learning: only 1 task, don't care about forgetting
- Transfer learning: don't care about reverse transfer, J is fixed
- Multi-Task Learning: J is fixed (no such thing as forgetting)
<br><br>
The key differentiator between **lifelong** and **dead** learning is forgetting.
---
### Variants of Lifelong Learning
- Supervised: the L2M .r[always] knows $j_t$
- **Un**supervised: the L2M .r[never] knows $j_t$
- **Semi**supervised: the L2M .r[sometimes] knows $j_t$
- **Mix**supervised: the L2M .r[may sometimes] know $j_t$
---
### How is this definition different?
Existing literature defines a **particular** L2M, and either:
1. empirically shows performance improves as T/J increases,
2. theoretically proves that performance improves as T/J increases.
We formally defined what it means for **any** L2M to be able to claim that it lifelong learns.
<!-- --
The key for lifelong learning is to ascertain for each task how different it is from the other tasks, and selective leverage knowledge from those tasks to improve performance over what would be possible without having access to data from those tasks -->
---
### Summary of Part 1
We propose the first, to our knowledge, general definition of what are the necessary and sufficient conditions for a learning machine to be a lifelong learner:
It must improve average performance across tasks as both number of tasks and samples increase, faster than a learner that operates on each task individually.
---
class: center, middle, inverse
(pause)
---
class: middle
## .center[.k[Can Randomer Forests do it?]]
---
### Approach
1. What are the necessary and sufficient components of any L2M?
2. What are Randomer Forests?
3. Do they have the "right stuff"?
---
### What are L2M Components?
Learning Machines:
<br>
<img src="images/learning.svg" style="width:600px;"/>
---
### What are L2M Components?
Lifelong Learning Machines:
<br>
<img src="images/lifelong_learning.svg" style="width:600px;"/>
- **KB** stores knowledge shared across tasks
- **Task-Specific Learner** generates task specific decision rules using KB
---
### What are Random Forests (RF)?
Given $T$ samples, a **random** forest is constructed as follows:
1. Randomly sample $T' < T$ to build a tree
2. Initialize the root node with all $T'$ samples, label it an internal node
3. For each internal node,
1. subsample $d$ features
2. find the best of those $d$ features to split on
3. split on it
4. For each daughter node, determine whether it is a terminal node
5. If not, return to step 3
6. Repeat for $N$ trees
---
### What are Random.r[er] Forests (RerF)?
Given $T$ samples, a **random.r[er]** forest is constructed as follows:
1. Randomly sample $T' < T$ to build a tree
2. Initialize the root node with all $T'$ samples, label it an internal node
3. For each internal node,
1. .r[generate $d$ sparse linear combinations of the original features]
2. find the best of those $d$ features to split on
3. split on it
4. For each daughter node, determine whether it is a terminal node
5. If not, return to step 3
6. Repeat for $N$ trees
---
### Why Might RerF > RF?
- RF can do *axis-aligned* splits, RerF can do *oblique* splits
- Trees can be stronger, tree strength bounds forest accuract
- Unlike other oblique methods
- RerF not fooled by lots of noisy features
- Computational complexity of RerF = RF
- Ensemble over parameters rather than a fixed parameter
---
### Do They Work Empirically?
<img src="images/rerf_perf1.png" style="width:600px;"/>
---
### Do They Work Theoretically?
<br>
Thm: Randomer forests are universally consistent, that is, $\hat{R}_t(f) \to 0$ as $t \to \infty$
---
### Do they work Lifelong?
--
yes (in theory).
--
(maybe also in practice)
---
#### Key Insight
Decision forests secretly have two parts:
1. learn tree structure
2. estimates leveraging tree structure
- Each can be separately estimated
- tree structure encodes KB
- estimates leveraging trees encode task-specific learning
#### Things I Need to Show You
1. RerF can consistently estimate $P[Y|X]$
2. RerF can learn KB in tree structure
<!-- So far, I only told you how to build trees, not
1. how to estimate stuff using trees
2. those estimates are theoretically consistent
2. how to learn structure
3. those estimates are theoretically consistent -->
---
### How to estimate stuff using trees:
For each tree:
- Take the $T - T'$ "out of tree" samples
- Pass all those samples down the tree
- Estimate $P[Y | X]$ for each terminal node in the tree:
- fraction of points in node with each value of $y$
This is called **honest sampling**.
--
Our insight: regardless of how one constructed a tree, one can still estimate $P[Y|X]$ from that tree on a new dataset/task.
--
This yields selective plasticity, not just per tree, but per node.
---
### A simple example
Given data from 2 tasks:
1. Build a forest for task 1
2. Build a forest for task 2
1. Using each tree in forest$_1$, estimate $P[Y|X]$ for task 1
3. Using each tree in forest$_2$, estimate $P[Y|X]$ for task 2
1. Using each tree in forest$_1$, estimate $P[Y|X]$ for task 2
1. Using each tree in forest$_2$, estimate $P[Y|X]$ for task 1
--
Given new data $x_t$ from task $j_t$:
1. pass each $x_t$ down all trees
1. obtain task $j_t$ estimates of $y$ from each tree
1. average results across all trees
---
### Estimating $P[Y|X]$
- Mixture of 2 spherically symmetric Gaussians centered at zero
- Sample 500 points from joint
- Compute $P[Y|X]$ for $ | x | < 4$
<img src="images/posterior_combined.png" style="width:700px;"/>
- CART is not consistent
- Honesty is theoretically consistent, but not good
- Conditional Entropy Forests (CEF) is both
---
### CEF empirically outperforms
<img src="images/posterior_var_x_500.png" style="width:700px;"/>
---
### CEF empirically outperforms
<img src="images/alg_comparison_final_noerror_20.png" style="width:700px;"/>
---
### CEF is theoretically consistent
Thm: Conditional entropy forest's estimate of $P[Y | X]$ is universally consistent, meaning
$\hat{P}_t[Y|X] \to P[Y|X]$ as $t \to \infty$.
--
### Summary so far
CEF both empirically and theoretically estimates the requisite quantifies with few-shot data
What about the KB?
---
### Building a knowledge base
- KB stores "latent low dimensional structure" of all data
- Latent structure is encoded in the **geodesic** distance
- KB should be able to learn which points are "**close**"" to one another along the geodesic in the face of noise
- Kernel matrices quantify how close are all pairs of points
---
### Decision Forest Kernels (DFK)
How to estimate a kernel from decision forests
Given $T$ measurements:
1. construct $N$ trees (somehow)
2. pass each data point down each tree
3. count the fraction of trees for which any pair of points lands in the same leaf node
This yields a $T \times T$ kernel matrix.
---
### Decision Forests Induce Characteristic Kernels
Thm: The above procedure (with a trivial modification) yields a characteristic kernel
Implication: any theorem about kernel machines and kernel learning (eg, consistency of SVM, MMD-GAN, etc.) can now immediately be applied to DFK's.
---
### DFK Improves Kernel Testing
- 16 different high-dimensional independence testing scenarios
- Each sample 100 points
- Y-axis is normalized power, higher is better
- X-axis is number of dimensions (additional dimensions are noise)
<img src="images/FigHDPowerAll_S-RF.png" style="width:600px;"/>
---
### KB Learning
- Consider these 4 scenarios
<img src="images/geodesic_data.png" style="width:700px;"/>
- We desire the KB learns which points are close to one another **on the latent manifolds**, even as noise is added.
- Manifold learning algorithms do this (in theory).
---
### URerF Learns Geodesic
- Geodesic Recall@k: the fraction of points that the learner says as the k closest that are actually the k closest **on the latent manifolds**
- URerF: unsupervised RerF
<img src="images/geodesic_estimates.png" style="width:700px;"/>
- As noise dimensions are added, existing manifold learning algorithms quickly approach chance levels.
---
### Putting it All Together
- Task 1 and Task 2 differ by sign flip
- Both are 10 dimensional two-class classification problems
- Each class is a spherically symmetric Gaussian
- Sample 100 points from each
<img src="images/trunks.png" style="width:700px;"/>
---
### Putting it All Together
<img src="images/trunks_wrf.png" style="width:400px;"/>
---
### Summary of Part 2
- Lifelong learners must
- Construct a KB
- Estimate task specific distributions
- Decision forests do both
- We proposed novel and improved ways to:
- Construct a KB via trees
- Estimate task specific distributions on trees
- We demonstrated on a toy example that putting these pieces together yielded an improved relative cumulative regret
---
class: center, middle, inverse
(pause)
---
class: middle
## .center[.k[Does it work on real data?]]
---
### Preliminary progress
1. Geodesic learning on Drosophila brains
2. Classification of Images
3. Classification of 2D CIFAR-10 Images
3. Classification of 3D brain images
---
### Drosophila Brain Networks
<img src="images/Fig15-new.png" style="width:800px;"/>
We are training Drosophila differently to modify this network
---
### Geodesic Learning Drosophila Brain
<img src="images/drosphila_precision_recall.png" style="width:800px;"/>
---
### Classification of Images
- Fundamentally, L2M involves low-shot learning
- Deep learing is data hungry
- Convolutional RF is not
- Compare Conv-RF with
- Simple CNN
- SOA CNN on this particular dataset
- MNIST data was too easy, everything got nearly perfect quickly
- CIFAR-10 was much harder:
- we subsampled the data up to 35% of the samples
---
### Classification of 2D CIFAR-10 Images
<img src="images/rf_deepconvrf_cnn_comparisons.png" style="width:600px;"/>
---
### Classification of 2D CIFAR-10 Images
<img src="images/rf_deepconvrf_cnn_comparisons2.png" style="width:600px;"/>
---
### Classification of 3D Brain Images
- Existing brain imaging datasets typically were all collected in a single batch
- We have 2 different kinds
---
#### Human Connectome Lifespan Data
- Hundreds of children ages 5-21
- Certain properties of them are static over time: race, sex, heritage, genotype, IQ
- Brains change over time
- We want to learn a decision rule, say, on sex using younger kids, and then continue learning on older kids to improve performance on both
- Data are done being collected, are now being processed
---
### Psychopathy Data
- Collected data over 10 years on mobile MRI scanner
- In that 10 year period, **lots** of stuff changed:
- hardware, software, operator, location
- We desire to learn a rule using the first 5 years, and then show that it can keep learning on the subsequent 5 years
- These data are awesome:
- nearly 900 subjects
- multi-modal imaged over 10 years (structural and diffusion)
- murderer, non-murderer violent criminal, non-violent criminal
- got IRB approval to even transfer data 3 weeks ago!
---
### Preliminary Exploratory Analysis
<img src="images/homicide_scatter.png" style="width:550px;"/>
---
### Summary of Part 3
- RerF learns geodesic on 1 task better than alternatives
- On "standard" 2D images, Conv-RF beats CNNs
- Real data now exist and are at least partially processed
---
class: center, middle, inverse
(pause)
---
## Next Steps
- Finalize formalization of what consistitues L2M
- Theoretically and empirically put all the pieces together
- Analyze real data
---
### References (Learning Trees)
1. C. Shen and J. T. Vogelstein. Decision Forests Induce Characteristic Kernels. arXiv, 2018
3. T. M. Tomita et al. Random Projection Forests. arXiv, 2018.
7. J. Browne et al. Forest Packing: Fast, Parallel Decision Forests. SIAM International Conference on Data Mining, 2018.
---
### References (Estimate Probabilities)
6. C. Shen et al. Discovering and Deciphering Relationships Across Disparate Data Modalities. eLife, 2019.
5. C. Shen, C. E. Priebe and J. T. Vogelstein. From Distance Correlation to Multiscale Graph Correlation. Journal of the American Statistical Association, 2018.
8. Y. Lee, C. Shen and J. T. Vogelstein. Network Dependence Testing via Diffusion Maps and Distance-Based Correlations. Biometrika, 2018.
2. C. Shen and J. T. Vogelstein. The Exact Equivalence of Distance and Kernel Methods for Hypothesis Testing. arXiv, 2018.
1. M. Madhya, et al. Geodesic Learning via Unsupervised Decision Forests. submitted, 2019.
---
### References (Vertex Nomination)
9. Vince Lyzinski, Keith Levin, Carey E. Priebe, On consistent vertex nomination schemes. Journal of Machine Learning Research, 2019
14. Jordan Yoder, et al. Vertex nomination: The canonical sampling and the extended spectral nomination schemes. submitted, 2018.
---
## Code
- RerF code: [https://neurodata.io/RerF/](https://neurodata.io/RerF/)
- Native R code (feature rich, relatively slow)
- Optimized C++ code (feature poor)
- Python bindings (core functionality there)
---
### Acknowledgements
<!-- <div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div> -->
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div>
<div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div>
<div class="small-container">
<img src="faces/bruce_rosen.jpg"/>
<div class="centered">Bruce Rosen</div>
</div>
<div class="small-container">
<img src="faces/kent.jpg"/>
<div class="centered">Kent Kiehl</div>
</div>
<!-- <div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div> -->
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div>
<!-- <div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div> -->
<div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div>
<!-- <div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div> -->
<div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div>
<!-- <div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div> -->
<div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div>
<div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div>
<div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div>
<!-- <div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div> -->
<div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div>
<div class="small-container">
<img src="faces/meghana.png"/>
<div class="centered">Meghana Madhya</div>
</div>
<div class="small-container">
<img src="faces/percy.png"/>
<div class="centered">Percy Li</div>
</div>
<div class="small-container">
<img src="faces/hayden.png"/>
<div class="centered">Hayden Helm</div>
</div>
<div class="small-container">
<img src="faces/satish.png"/>
<div class="centered">Satish Palaniappan</div>
</div>
<div class="small-container">
<img src="faces/nate.png"/>
<div class="centered">Nate Anderson</div>
</div>
<div class="small-container">
<img src="faces/fan.png"/>
<div class="centered">Qiuyun Fan</div>
</div>
</div><span style="font-size:200%; color:red;">♥, 🦁, 👪, 🌎, 🌌</span>
<!-- <img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/> -->
<img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/>
<!-- <img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/> -->
---
class:center
<img src="images/lion_cartoon2.jpg" style="position:absolute; top:0px; left:0px; height:100%;"/>
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function() {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {delimiters: [ // mind the order of delimiters(!?)
{left: "$$", right: "$$", display: true},
{left: "$", right: "$", display: false},
{left: "\\[", right: "\\]", display: true},
{left: "\\(", right: "\\)", display: false},
]});
}
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>