-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathL2M_PI3.html
573 lines (417 loc) · 15.5 KB
/
L2M_PI3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
<!DOCTYPE html>
<html>
<head>
<title>Learning</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
<div>
<img src=
"images/darpa_logo.png"
alt="jhu logo"
align="left"
width = "100"
height= "50">
<img src=
"images/jhu.png"
alt="jhu logo"
align="right"
width = "140"
height= "65">
</div>
<br>
###Lifelong Learning: Theory and Practice
PI: Joshua T. Vogelstein, [JHU](https://www.jhu.edu/)<br>
Jayanta Dey, Ali Geisa, Hayden Helm, Ronak Mehta, Will LeVine,
Carey E. Priebe <br>
Co-PI: Vova Braverman, [JHU](https://www.jhu.edu/) <br>
Haoran Li, Aditya Krishnan, Jingfeng Wu <br>
SGs: SRI, ARGONE, HRL
<center>
![:scale 35%](images/neurodata_blue.png)
</center>
---
### Summary
.ye[Research Question:] Why is LL difficult, and how can we design algorithms/datasets to solve it?
.ye[Approach:]
- Introduced out-of-distribution (OOD) learning theory framework for theoretical analysis of lifelong learning
- Introduced ensembling representations
.ye[Accomplishments:]
- Proved various OOD weak learner theorems
- Achieved consistent positive forward and backward transfer (synergistic learning) in practice
.ye[Key Take-Away:] LL is fundamentally harder than classical ML, and ensembling representations can synergistically learn
---
### Result 1: OOD Learning Theory
We uncouple the evaluation distribution from training data distributions
![:scale 100%](images/learning-schematics.png)
---
### Putting LL within OOD Framework
![:scale 100%](images/learning-table.png)
---
### Defining/Quantifying Learning & Forgetting
<!-- The above two definitions enable one to assess .ye[whether] an agent $f$ has learned, but not .ye[how much] it learned. -->
![:scale 100%](images/learning-efficiency.png)
Using non-task data to improve performance over what it could achieve using only task data
- Learning: $\mathbf{S}^A=\mathbf{S}\_0$ and $\mathbf{S}^B=\mathbf{S}\_n$.
- Transfer learning: $\mathbf{S}^A=\mathbf{S}^1$ and $\mathbf{S}^B=\mathbf{S}\_n$.
- Multitask learning: for each $t$, $\mathbf{S}^A=\mathbf{S}^t$ and $\mathbf{S}^B=\mathbf{S}\_n$.
- Forward learning: $\mathbf{S}^A=\mathbf{S}^t$ and $\mathbf{S}^B=\mathbf{S}^{< t}$.
- Backward learning: $\mathbf{S}^A=\mathbf{S}^{< t}$ and $\mathbf{S}^B=\mathbf{S}\_n$.
<!-- Each of the previous definitions are all special cases of $LE^t_f(\mathbf{S}^A, \mathbf{S}^B)$, for specific choices of $\mathbf{S}^A$ and $\mathbf{S}^B$ -->
---
### Result 2: Proving novel properties of OOD learning
<!-- ![:scale 100%](images/weak-ood-learnability.png)
basically, using non-task data to improve performance at all
![:scale 100%](images/strong-ood-learnability.png)
basically, using non-task data to perform arbitrarily well -->
<!-- --- -->
<!-- ### Weak OOD Learner Theorem -->
Classical theory:
- Weak learning: can do better than chance on some task with sufficient data
- Strong learning: can do arbitrarily close to optimal on some task with sufficient data
- Weak Learner Theorem: if a problem is weakly learnable, it is also strongly learnable
OOD learning theory
- Training distribution is uncoupled from evaluation distribution
---
### More data is inadequate for LL
Theorem 1: With *only* out-of-distribution data, there exists some problems that are weakly, but not strongly, learnable.
- This implies that OOD learning is different *in kind* from in-distribution learning.
- Lifelong learning is a special case of OOD learning
- Getting .ye[more] data is *not* guaranteed to improve performance arbitrarily in LL, we need .ye[better] data
---
### Learning efficiency is a fundamental notion of learning
Theorem 2: Weak OOD learnability implies transfer learnability (i.e., learning efficiency > 1). That is, if one can weakly learn, one can also transfer learn, but not necessarily vice versa.
- This implies that transfer learnability is a fundamental property of learning problems
- In other words, inability to transfer is equivalent to inability to learn at all.
---
### Result 3: Ensembling representations achieves synergistic learning
![:scale 100%](images/learning_schema_new.png)
---
### Omnidirectional Algorithms Show Forward Transfer
CIFAR 10x10
<!-- - *CIFAR 100* is a popular image classification dataset with 100 classes of images. -->
<!-- - CIFAR 10x10 breaks the 100-class task problem into 10 tasks, each with 10-class. -->
![:scale 100%](images/cifar_exp_fte.png)
---
### Omnidirectional Algorithms Uniquely Show Backward Transfer for Each Task
![:scale 100%](images/cifar_exp_bte.png)
---
### Future Directions/ Transitions
- omnidirctional algorithm code continues to improve [http://proglearn.neurodata.io/](http://proglearn.neurodata.io/)
- streaming forest for streaming lifelong learning setup [https://sdtf.neurodata.io](https://sdtf.neurodata.io)
![:scale 80%](images/streaming_forest.png)
---
### Kernel Density Networks/Forests generate well calibrated posteriors
- [https://github.com/neurodata/kdg](https://github.com/neurodata/kdg)
- KDG on Guassian XOR simulation data
![:scale 100%](images/kdn_kdf.png)
<br>
---
### Deep Networks are the worst model of the mind
<img src=
"images/nn_rf_jong.gif"
alt="jong"
width = "700"
height= "250">
---
<br>
<br>
<br>
<img src=
"images/vova1.png"
alt="vova 1"
width = "800"
height= "400">
---
<br>
<br>
<br>
<img src=
"images/vova2.png"
alt="vova 2"
width = "800"
height= "400">
---
### Acknowledgements
<!-- <div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div> -->
<div class="small-container">
<img src="faces/yummy.jpg"/>
<div class="centered">yummy</div>
</div>
<div class="small-container">
<img src="faces/lion.jpg"/>
<div class="centered">lion</div>
</div>
<div class="small-container">
<img src="faces/violet.jpg"/>
<div class="centered">baby girl</div>
</div>
<div class="small-container">
<img src="faces/family.jpg"/>
<div class="centered">family</div>
</div>
<div class="small-container">
<img src="faces/earth.jpg"/>
<div class="centered">earth</div>
</div>
<div class="small-container">
<img src="faces/milkyway.jpg"/>
<div class="centered">milkyway</div>
</div>
##### JHU
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<!-- <div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bruce_rosen.jpg"/>
<div class="centered">Bruce Rosen</div>
</div>
<div class="small-container">
<img src="faces/kent.jpg"/>
<div class="centered">Kent Kiehl</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div> -->
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<!-- <div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div> -->
<div class="small-container">
<img src="faces/meghana.png"/>
<div class="centered">Meghana Madhya</div>
</div>
<!-- <div class="small-container">
<img src="faces/percy.png"/>
<div class="centered">Percy Li</div>
</div>
-->
<div class="small-container">
<img src="faces/hayden.png"/>
<div class="centered">Hayden Helm</div>
</div>
<div class="small-container">
<img src="faces/rguo.jpg"/>
<div class="centered">Richard Gou</div>
</div>
<div class="small-container">
<img src="faces/ronak.jpg"/>
<div class="centered">Ronak Mehta</div>
</div>
<div class="small-container">
<img src="faces/jayanta.jpg"/>
<div class="centered">Jayanta Dey</div>
</div>
<div class="small-container">
<img src="faces/will.jpg"/>
<div class="centered">Will LeVine</div>
</div>
##### Microsoft Research
<div class="small-container">
<img src="faces/chwh-180x180.jpg"/>
<div class="centered">Chris White</div>
</div>
<div class="small-container">
<img src="faces/weiwei.jpg"/>
<div class="centered">Weiwei Yang</div>
</div>
<div class="small-container">
<img src="faces/jolarso150px.png"/>
<div class="centered">Jonathan Larson</div>
</div>
<div class="small-container">
<img src="faces/brtower-180x180.jpg"/>
<div class="centered">Bryan Tower</div>
</div>
##### DARPA L2M
<!-- Hava, Ben, Robert, Jennifer, Ted. -->
{[BME](https://www.bme.jhu.edu/),[CIS](http://cis.jhu.edu/), [ICM](https://icm.jhu.edu/), [KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/) | [neurodata](https://neurodata.io)
<br>
[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)
</div>
<!-- <img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/> -->
<!-- <img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/> -->
---
background-image: url(images/l_and_v.jpeg)
.footnote[Questions?]
---
class: middle
# .center[Appendix]
---
.small[
### Publications
1. A. Geisa et al. [Towards a theory of out-of-distribution learning](https://arxiv.org/abs/2109.14501), arXiv, 2021.
1. J. T. Vogelstein et al. [Omnidirectional Transfer for Quasilinear Lifelong Learning](https://arxiv.org/abs/2004.12908), arXiv, 2021.
1. Xu, Haoyin, et al. [Streaming Decision Trees and Forests](https://arxiv.org/abs/2110.08483), arXiv, 2021.
1. C. E. Priebe et al. [Modern Machine Learning: Partition and Vote](https://doi.org/10.1101/2020.04.29.068460), 2020.
1. R Guo, et al. [Estimating Information-Theoretic Quantities with Uncertainty Forests](https://arxiv.org/abs/1907.00325). arXiv, 2019.
1. R. Perry, et al. [Manifold Forests: Closing the Gap on Neural Networks](https://openreview.net/forum?id=B1xewR4KvH). arXiv, 2019.
1. C. Shen and J. T. Vogelstein. [Decision Forests Induce Characteristic Kernels](https://arxiv.org/abs/1812.00029). arXiv, 2019.
1. M. Madhya, et al. [Geodesic Learning via Unsupervised Decision Forests](https://arxiv.org/abs/1907.02844). arXiv, 2019.
1. M. Madhya, et al. [PACSET (Packed Serialized Trees): Reducing Inference Latency for Tree Ensemble Deployment](https://arxiv.org/abs/2011.05383). arXiv, 2020.
### Conferences
1. J.T. Vogelstein et al. A biological implementation of lifelong learning in the pursuit of artificial general intelligence. NAISys, 2020.
2. B. Pedigo et al. A quantitative comparison of a complete connectome to artificial intelligence architectures. NAISys, 2020.
]
---
### Biological learning is on top
![:scale 100%](images/learning-table.png)
---
### Omnidirectional Algorithms can Transfer Between XOR and XNOR
![:scale 100%](images/xor_xnor_exp.png)
---
### Spoken Digit dataset
.pull-left[
- *Spoken Digit* contains recording from 6 different speakers.
- Each digit has 50 recordings (3000 total recordings).
- For each recording spectrogram was extracted using using Hanning windows of duration 16 ms with an overlap of 4 ms.
- The spectrograms were resized down to 28×28.
]
.pull-right[
<img src="images/spectrogram.png" style="position:absolute; left:500px; width:400px;"/>
]
---
### Omnidirectional Algorithms on Spoken Digit Task
![:scale 105%](images/spoken_digit.png)
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<!-- <script src="remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
remark.macros.scale = function (percentage) {
var url = this;
return '<img src="' + url + '" style="width: ' + percentage + '" />';
};
// var slideshow = remark.create({
// Set the slideshow display ratio
// Default: '4:3'
// Alternatives: '16:9', ...
// {
// ratio: '16:9',
// });
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>