-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgraspy.html
753 lines (475 loc) · 16.8 KB
/
graspy.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
<!DOCTYPE html>
<html>
<head>
<title>Connectal Coding</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
name:opening
**An Introduction to Graph Statistics**<br>
Joshua Vogelstein |
{[BME](https://www.bme.jhu.edu/),[CIS](http://cis.jhu.edu/), [KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/)
<a href="https://neurodata.io"><img src="images/neurodata_purple.png" style="height:430px;"/></a>
<!-- <img src="images/funding/jhu_bme_blue.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KNDI.png" STYLE="HEIGHT:95px;"/> -->
<!-- <font color="grey"></font> -->
.foot[[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)]
---
class: center, middle
## .center[https://neurodata.io/graspy/]
---
## Outline
- Background
- Statistical Models of Connectomes
- Statistical Models of Populations of Connectomes
- Applications
- Discussion
---
class: middle
## .center[.k[Background]]
---
### What is a Connectome?
- .r[Network] of a brain, at a spatiotemporal precision & extent
- .r[Nodes] are distinct biophysical entities
- .r[Edges] indicate the presence of a connection/communication between nodes
- .r[Attributes] of the network, nodes, or edges are possible
--
<br>
- Example nodes: cells, cellular compartment, cellular ensembles
- Example edges: synapses, gap junction, fiber bundles
---
## Many adjacency matrices, one graph
Drosophila larva connectome, Eichler et al. 2017
<img src="images/multi-adj-dros.png" style="width: 700px;"/>
---
### Definitions
.r[Neural (activity) coding]: inferring the relationships between neural *activity* and past, present, or future events, states, or traits
--
.r[Connectal coding]: inferring the relationships between neural *connectivity* and past, present, or future events, states, or traits
--
.s[events]: genetic, developmental, experiential (stimuli/behavior)
.s[traits]: IQ, sex, personality, learning disabled
.s[states]: happy, resting, manic
<!-- ---
### Implications
- A brain could have many different connectomes, at different times and/or resolutions, and measured in different ways (e.g. structural or functional)
- The definition of node can mean different things at different scales
- We measure properties of the brain to .r[estimate] connectomes
- Estimates are always .r[noisy] -->
---
### Why Use Statistical Models?
- Connectome estimates are noisy
- Connectomes, and their relationships to events, states, or traits, can be complicated
- We wish to
- quantify uncertainty
- incorporate domain knowledge to the extent possible
- summarize natural phenomena in a "simple" way
- understand limitations of analyses
### Implications
- All inferences about population .r[depend on model]
---
### Connectome Analysis Styles
- Bag of edges
- Bag of features
- Bag of parameters
---
### Bag of Edges
- Treat each edge as independent
- Implicit model: independent edge model
---
### Bag of Features
- Choose $m$ features and compute them per graph
- Characterize connectome with this set of "parameters"
- Implicit model: exponential random graph model
---
### Bag of Parameters
- Build a **statistical parametric model** of brain network
- Can encode some domain knowledge explicitly
- Can model edges, nodes, communities
- Implicit model: latent structure model
---
### Limitations of approaches
---
### Limitations of Bag of Edges
- Completely ignores graph structure of data
- Too simple for many questions
---
#### Sometimes the signal is in the node
<img src="images/pop1_p_mat.png" style="width: 350px;"/>
<img src="images/pop2_p_mat.png" style="width: 350px;"/>
---
#### Edge-wise stats show no significance
<img src="images/edgewise_p_vals.png" style="width: 600px;"/>
---
#### Node-wise test finds the signal
<img src="images/nodewise_p_vals.png" style="width: 750px;"/>
---
### Limitations of Bag of Features
- how do I choose which features (hint: arbitrary)?
- how many features are possible given a graph with $n$ nodes (hint: many)?
- do these features characterize the brain (hint: no)?
- can we make causal claims using these features (hint: no)?
- are these features independent (hint: no)?
- least well understood of the approaches, but very common
---
### Same Stats, Different Graphs
<div>
<img src="images/same_stats_diff_graphs.png" style="height: 400px;" align="right"/>
</div>
- num vertices = 12
- num edges = 21
- number of triangles = 10
- global clustering coefficient = 0.5
<br><br><br><br><br><br><br><br><br>
.foot[[Chen et al.](https://link.springer.com/chapter/10.1007/978-3-030-04414-5_33)]
---
### Distribution of Features, n=10
<img src="images/j1c-all-graphs-hexbin.png" style="height: 500px;"/>
---
### Condition on "close" to base graph
<img src="images/j1c_hexbin_31_base.png" style="height: 500px;" />
.footnote[(edges=31, threshold=3, n=200k)]
<!-- ER image & IER image (random p_ij's) -->
<!-- Model of 1 graph
- for each of the 3 approaches (IE, ERGM, LSM)
- define different approaches
- give examples
- demonstrate pro's and con's of different approaches
- prob with ER: too simple
- prob with IE: sometimes signal is in the nodes
- prob with ERGM: j1c's thingy
- prob with latent positions: less intuitive
- value of latent positions:
- characterize the data
- model of \geq 2 graphs
- correlated ER
- COSIE
- MRDPG
- applications of multigraph models
- test for equality, mouse example
- test for indepedence, bear example
- test for heritability
- graph matching
- mic drop
-->
<!--
- requires multiple hypothesis correction for valid tests
- does anybody know a good way to correct (hint: no)?
- BH: way under-conservative (false positives)
- Bonferroni: way over-conservative (false negatives) -->
---
### Limitations of Bag of Parameters
- Conceptually less intuitive
---
class: middle
## .center[.k[Statistical Models of Connectomes]]
---
### Erdos-Renyi (ER)
- akin to assuming a neuron's spike rate is Poisson with a fixed rate.
- all edges independent
- all edges sampled from identical distribution
- only 1 parameter: prob of an edge
- $\mathbb{P}[A_{i,j}] = p$
Notes
- <b> Simplest random graph model; lacks descriptive power </b>
---
### Drosophila Connectome ER
<br>
<img src="images/dros_er_model.png" style="width: 800px;" />
- p = 0.166
---
### Degree Corrected Erdos-Renyi (DCER)
- edges are independent
- edges are sampled from .r[different] distributions
- .r[n+1 parameters]: degree correction for each node
- $\mathbb{P}[A_{i,j}] = \theta_i\theta_jp$
Notes
- n+1 paramers is much larger than 1
- still ignores structure
---
### Drosophila Connectome DCER
<br>
<img src="images/dros_dcer_model.png" style="width: 800px;" />
---
### Stochastic Block Model (SBM)
- akin to assuming a neuron's are in different states, which determine Poisson rate.
- edges are .r[conditionally] independent
- each node has a class assignment
- $\mathbb{P}[A_{i,j}]$ = $B$(class i, class j)
Notes
- simplest >2 parameter model
---
### Drosophila Connectome SBM
<img src="images/dros_sbm_model.png" style="width: 800px;"/>
---
### Degree-corrected Stochastic Block Model (DCSBM)
- edges are .r[conditionally] independent
- each node has a class assignment
- $\mathbb{P}[A_{i,j}]$ = $\theta_i\theta_jB$(class i, class j)
Notes
- simplest >2 parameter model
---
## Drosophila Connectome DCSBM
<img src="images/dros_dcsbm_model.png" style="width: 800px;" />
---
### Random Dot Product Graphs (RDPG)
- akin to latent state models in population coding
- edges are conditionally independent
- each node has a .r[latent position in d-dimensions]
- $\mathbb{P}[A_{i,j}]$ = f(latent position i, latent position j)
- for example, $\mathbb{P}[A_{i,j}]$ is the dot product of latent positions
Notes
- generalizes previous models
---
### Latent positions allow for more general relationships
<img class="left" src="images/RDPGrank6latent.png" style="width: 400px;" />
<img class="right" src="images/legendn copy.png" style="width: 150px;"/>
---
### Drosophila Connectome RDPGs
<img src="images/dros_rdpg_model.png" style="width: 750px;"/>
---
### Model considerations/extensions
- Directed extensions exist
- Loopy extensions exist
- Weighted extensions exist (mostly)
<!-- ---
### What can we do with parameters?
- Node clustering or classification
- Bootstrap? -->
---
class: middle
## .center[.k[Statistical Models of] .r[Populations of] .k[ Connectomes]]
<!--
## Population Graph Models
- Joint RDPG
- Common Subspace Independent Edge Graph (COSIE) -->
---
### Joint Random Dot Product Graphs
- All nodes have a latent position in d-dimensional space
- Each graph has a latent position matrix
<img src="images/omni_method.png" style="width: 650px;" />
---
### Common Subspace Independent Edge Graph (COSIE)
- Common latent position matrix shared across all graphs
- Individual graphs are transformation of the common matrix
<img src="images/mase_method.png" style="width: 650px;" />
---
class: middle
## .center[.k[Application of Population Models]]
---
### Mouse Connectomes From Same Genotype are Similar
<img src="images/mouse_connectomes.png" style="width: 750px;" />
---
### Structural Connectomes are Heritable
<img src="images/heritability.png" style="width: 750px;" />
- MRDPG model
---
### COSIE Model Can Recover Bilateral Separation
<img src="images/HNU1-latentpositions-plot.png" style="width: 700px;" />
- HNU1 Dataset
---
### COSIE Model Can Recover Clusters of Same Test-Retest Scans
<img src="images/HNU1-mds123-cbpalette.png" style="width: 750px;" />
- HNU1 Dataset
---
### COSIE Model Can Perfectly Classify of Subjects
<img src="images/HNU1-classerror.png" style="width: 750px;" />
---
class: middle
## .center[.k[Discussion]]
---
## Summary and Next Steps
- Connectomes are the mechanistic link:
.center[.r[genotype --> phenotype]]
- Extend ideas from coding theory to support these analyses
- Connectomes, genetic and phenotypic data are available
---
### References
- Connectal Coding [[1]](https://doi.org/10.1016/j.conb.2019.04.005)
- Description of GraSPy [[2]](https://arxiv.org/abs/1904.05329)
- Statistics on RDPG [[3]](https://dl.acm.org/citation.cfm?id=3242083)
- Two-sample hypothesis testing for RDPG [[4]](https://arxiv.org/abs/1403.7249)
- Two-sample hypothesis testing for two random graphs [[5]](https://projecteuclid.org/euclid.bj/1489737619)
- COSIE model and estimation [[6]](https://arxiv.org/abs/1906.10026)
- Omnibus Embedding for JRDPG estimation [[7]](https://ieeexplore.ieee.org/document/8215766)
- Mouse Connectome Heritability [[8]](https://www.biorxiv.org/content/10.1101/701755v1)
- Connectome smoothing [[9]](https://ieeexplore.ieee.org/document/8570772)
---
### Acknowledgements
<div class="small-container">
<img src="faces/jovo.png" />
<div class="centered">Joshua Vogelstein</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg" />
<div class="centered">Jaewon Chung</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/hayden.png"/>
<div class="centered">Hayden Helm</div>
</div>
<div class="small-container">
<img src="faces/jesus.jpg"/>
<div class="centered">Jesus Arroyo</div>
</div>
<div class="small-container">
<img src="faces/ronak.jpg"/>
<div class="centered">Ronak Mehta</div>
</div>
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div>
<div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div>
<div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div>
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div>
<div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div>
<div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div>
<div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div>
<div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div>
<div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div>
<div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div>
<div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div>
<div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div>
<div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div>
<div class="small-container">
<img src="faces/ronan.jpg"/>
<div class="centered">Ronan Perry</div>
</div>
<div class="small-container">
<img src="faces/vivek.jpg"/>
<div class="centered">Vivek Gopalakrishnan</div>
</div>
<div class="small-container">
<img src="faces/tommy_athey.jpg"/>
<div class="centered">Tommy Athey</div>
</div>
<div class="small-container">
<img src="faces/patsolic_heather.jpg"/>
<div class="centered">Heather Patsolic</div>
</div>
<div class="small-container">
<img src="faces/bijan.jpg"/>
<div class="centered">Bijan Varjavand</div>
</div>
<span style="font-size:200%; color:red;">♥, 🦁, 👪, 🌎, 🌌</span>
<img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/>
<img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/>
---
class: middle
## .center[.k[Additional Information]]
---
## Adjacency Spectral Embedding
- Method for estimating parameter for RDPG model (for single graph)
- $\hat{X} = UD^{1/2}$ where $U, D, V = SVD(A)$.
---
## Omnibus Embedding
- Method for estimating parameters for Joint RDPG model
<img src="images/omni_method.png" style="width: 750px;" />
---
## Multiple Adjacency Spectral Embedding (MASE)
- Method for estimating parameters for COSIE model
<img src="images/mase_method.png" style="width: 750px;" />
---
### Genotype, Phenotype, Connectotype
- .r[Phenotype]: a description of an individual's properties with regard to a phenomenon of interest
- .r[Genotype]: a set of genes and associated variants associated with that phenotype
- .r[Connectotype]: a set of nodes, edges, and their properties that are associated with that phenotype
--
<br><br>
.center[Genotype --> Connectotype --> Phenotype]
**Connectotypes are the implementation-level mechanisms linking genotypes to phenotypes**
---
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>