-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathheritability.html
398 lines (309 loc) · 8.73 KB
/
heritability.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
<!DOCTYPE html>
<html>
<head>
<title>Heritability</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
<!-- TODO add slide numbers & maybe slide name -->
### Heritablity of Human Structural Connectomes
![:scale 40%](images/neurodata_blue.png)
Jaewon Chung
---
name:talk
### Outline
- [Background](#defn)
- [Measuring Heritability](#statistics)
- [Discussion](#disc)
---
name:defn
### Outline
- Background
- [Measuring Heritability](#statistics)
- [Discussion](#disc)
---
### What is Heritability?
- .ye[Heritability]: phenotypic variations due to genetic variations
- understand effects of genes (+environment) on brain circuitry
- understand neurologic diseases
Question: Are the connectivity patterns in human brains heritable?
---
### What is a graph?
(aka networks or connectomes)
- Vertex = a region of interest
- Edges = connectivity measure between a pair of vertices
- Diffusion MRI = # of estimated neuronal fibers
![:scale 75%](images/herit/graph.png)
---
### Graph = Adjacency matrix
![:scale 100%](images/herit/representations.png)
---
### What data will we be using?
- Human Connectome Project dataset
- Identical twins (monozygotic), fraternal twins (dizygotic), siblings
- $N\approx 1200$ individuals recruited
- Most have diffusion and functional MRI
---
name:statistics
### Outline
- [Background](#defn)
- Measuring Heritability
- [Discussion](#disc)
---
### Hypothesis testing: distance correlation (DCorr)
- Tests whether $X$ and $Y$ are independent.
- Key idea: measures correlation between distance matrices $D^X$ and $D^Y$
- $D_{ij}^X = \delta_X(x_i, x_j), D_ij^Y = \delta_Y(y_i, y_j)$
<br><br>
Are differences in pairs of connectomes indepedent of genetics?
- Need to compute $D^X$ and $D^Y$
---
### Distance between graphs: Step 1
- Compute adj. spectral embedding (ASE) on graphs $G, H$
- Embeddings = latent positions
- ASE$(G) = \hat{X}$, ASE$(H) = \hat{Y}$
- $\hat{X}, \hat{Y}\in\mathbb{R}^{N\times d}$
<center>
![:scale 80%](images/herit/ase.png)
</center>
---
### Distance between graphs: Step 2
- Distance = Frobenius norm of difference in latent positions
- $\delta_X(G, H) = ||\hat{X}R - \hat{Y}||_F$
<center>![:scale 80%](images/herit/compute_distance.png)</center>
High distance: pair of graphs are less similar (or more dissimilar)
---
### What is genetic distance?
- Encode via labels
- $\delta_Y(y_i, y_j) = 0$ if monozygotic (or self)
- $\delta_Y(y_i, y_j) = 1$ if dizygotic/sibling
- $\delta_Y(y_i, y_j) = 2$ if unrelated
<center>![:scale 35%](images/herit/genetic_distance.png)</center>
---
### Are the connectome and genetics distances independent?
--
<br><br><br><br>
<center>No (reject null)</center>
---
### Distribution of distances are ordered
<center>
![:scale 50%](images/herit/distances.png)
</center>
---
### Mann-Whitney test
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<th>MZ < DZ</th>
<td>1.647243e-02</td>
</tr>
<tr>
<th>MZ < Sibling</th>
<td>2.302542e-08</td>
</tr>
<tr>
<th>MZ < Unrelated</th>
<td>9.732951e-19</td>
</tr>
<tr>
<th>DZ < Sibling</th>
<td>1.042699e-02</td>
</tr>
<tr>
<th>DZ < Unrelated</th>
<td>1.154470e-08</td>
</tr>
<tr>
<th>Sibling < Unrelated</th>
<td>1.060595e-13</td>
</tr>
</tbody>
</table>
Caveat: samples are not independent
---
### What about confounders?
- Studies show anatomical features are heritable
- e.g. brain volume
- Prior results explained by anatomy?
---
### Are the covariates themselves heritable?
- Features: brain volume, four measurements of diffusivity
- Covariate distance: $\delta_Z(z_i, z_j) = ||z_i - z_j||_F$
- DCorr(covariate distance, genetic distances) = <font color="red">reject null</font>
<center>
![:scale 40%](images/herit/covariate_dist.png)
</center>
---
### Mann-Whitney test
<table border="2" class="table">
<thead>
<tr style="text-align: right;">
<th></th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<th>MZ < DZ</th>
<td>1.074841e-02</td>
</tr>
<tr>
<th>MZ < Sibling</th>
<td>3.092601e-04</td>
</tr>
<tr>
<th>MZ < Unrelated</th>
<td>1.462330e-08</td>
</tr>
<tr>
<th>DZ < Sibling</th>
<td>3.345203e-01</td>
</tr>
<tr>
<th>DZ < Unrelated</th>
<td>4.825626e-03</td>
</tr>
<tr>
<th>Sibling < Unrelated</th>
<td>3.549662e-06</td>
</tr>
</tbody>
</table>
---
### Conditional Distance Correlation (CDCorr)
- Same as DCorr, but we now test $X \perp Y | Z$
- CDCorr(connectome distances, genetic distances | covariate distances) = <font color="red">reject null</font>
---
### Finding “non-heritable” Induced Subgraph
- Subgraph = graph formed from subset of vertices
- Motivation: heritability explained by small subset of vertices?
- Repeat CDCorr for each vertex, discard vertices with small p-value
<center>
![:scale 40%](images/herit/subgraph.png)
</center>
---
### Mann-Whitney Test
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<th>MZ < DZ</th>
<td>4.237065e-01</td>
</tr>
<tr>
<th>MZ < Sibling</th>
<td>3.990682e-03</td>
</tr>
<tr>
<th>MZ < Unrelated</th>
<td>9.618273e-07</td>
</tr>
<tr>
<th>DZ < Sibling</th>
<td>6.148544e-03</td>
</tr>
<tr>
<th>DZ < Unrelated</th>
<td>1.987379e-06</td>
</tr>
<tr>
<th>Sibling < Unrelated</th>
<td>7.779698e-06</td>
</tr>
</tbody>
</table>
---
class: middle
.center[questions?]
---
### Acknowledgements
<div class="small-container">
<img src="faces/jovo.png"/>
<div class="centered">Josh Vogelstein</div>
</div>
<div class="small-container">
<img src="faces/cep.png" />
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/ebridge.jpg" />
<div class="centered">Eric</div>
</div>
<div class="small-container">
<img src="faces/jesus.jpg"/>
<div class="centered">Jesus</div>
</div>
<div class="small-container">
<img src="faces/jayanta.jpg"/>
<div class="centered">Jayanta</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben</div>
</div>
<div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex</div>
</div>
<div class="small-container">
<img src="faces/ross.jpg"/>
<div class="centered">Ross</div>
</div>
<img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/>
<img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/>
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<!-- <script src="remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
remark.macros.scale = function (percentage) {
var url = this;
return '<img src="' + url + '" style="width: ' + percentage + '" />';
};
// var slideshow = remark.create({
// Set the slideshow display ratio
// Default: '4:3'
// Alternatives: '16:9', ...
// {
// ratio: '16:9',
// });
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>