-
Notifications
You must be signed in to change notification settings - Fork 8
/
kki19.html
746 lines (438 loc) · 15.1 KB
/
kki19.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
<!DOCTYPE html>
<html>
<head>
<title>Connectal Coding</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
name:opening
**Connectal Coding: Discovering the Mechanism Linking Cognitive Phenotypes to Brain Connectivity**<br>
Joshua T. Vogelstein |
{[BME](https://www.bme.jhu.edu/),[ICM](https://icm.jhu.edu/),[CIS](http://cis.jhu.edu/),[KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/)
<a href="https://neurodata.io"><img src="images/neurodata_purple.png" style="height:430px;"/></a>
<!-- <img src="images/funding/jhu_bme_blue.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KNDI.png" STYLE="HEIGHT:95px;"/> -->
<!-- <font color="grey"></font> -->
.foot[[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)]
---
class: center, middle
## .center[https://neurodata.io/graspy/]
---
## Outline
- Background
- Example Connectomes
- Connectal Coding
- Applications
- Discussion
---
## .k[Background]
---
### Two definitions
.r[Neural (activity) coding]: inferring rules governing the relationship between brain **activity** and past, present, and future cognitive phenotypes.
--
.r[Connectal coding]: inferring rules governing the relationship between brain **connectivity** and past, present, and future cognitive phenotypes.
---
### Connectome in Literature
- Sporns et al. *PLoS CB* (2005)
- Hagmann (2005)
- PubMed (circa 2018): .r[3000+] hits.
---
### Connectome according to jovo
- .r[Network] of a brain, at a spatiotemporal precision & extent
- .r[Nodes] are distinct biophysical entities
- .r[Edges] are *structural* objects connecting a pair of nodes
- .r[Attributes] of the network, nodes, or edges are possible
--
<br>
- Example nodes: neurons, neural compartment, neural ensembles
- Example edges: synapses, gap junction, fiber bundles
---
### Genotype, Phenotype, Connectotype
- .r[Phenotype]: a description of an individual's properties with regard to a phenomenon of interest
- .r[Genotype]: a set of genes and associated variants associated with that phenotype
- .r[Connectotype]: a set of nodes, edges, and their properties that are associated with that phenotype
--
<br><br>
.center[Genotype --> Connectotype --> Phenotype]
**Connectotypes are the implementation-level mechanisms linking genotypes to phenotypes**
---
### Implications
- A brain could have many .r[different] connectomes, at different times and/or resolutions
- We measure properties of the brain to .r[estimate] connectomes
- Those measurements can be .r[structural] or .r[functional]
- Estimates are always .r[noisy]
--
### Some caveats
- connectomes are not comprehensive, unlike genomes
- nodes can be abstractions, eg, all neurons type A
- attributes can be arbitrary, eg, distribution of synaptic vesicles
---
### Connectomes for Connectal Coding
<br>
Hhypothesis generation not hypothesis testing
---
## .k[Example Connectomes]
---
### C Elegans
<img src="images/elegans_connectome.png" style="height: 450px;"/>
- directed, multi
---
### Drosophila Mushroom Body
<img src="images/drosophila_left_mb.png" style="height: 450px;"/>
- directed
---
### Mouse Ex Vivo Diffusion MRI
<img src="images/mousedMRI_connectome.png" style="height: 450px;"/>
- undirected
---
### Human MRI
<img src="images/human_connectome.png" style="height: 450px;"/>
- undirected, multi (semi-dense)
---
## .k[Connectal Coding]
---
### Connectome Analysis Styles
- bag of edges
- bag of features
- bag of parameters
---
### Bag of Edges
- treat each edge as independent
- does this completely ignores graph structure of data (hint: yes)?
- requires multiple hypothesis correction for valid tests
- does anybody know a good way to correct (hint: no)?
- BH: way under-conservative (false positives)
- Bonferroni: way over-conservative (false negatives)
- Network based statistics: no theoretical guarantees
---
#### Power vs. Effect Size :(
<img src="images/sim1_power_parameters.png" style="width: 750px;"/>
--
<img src="images/sim1_power.png" style="height: 250px;"/>
---
#### Sometimes the signal is in the node
<img src="images/pop1_p_mat.png" style="width: 350px;"/>
<img src="images/pop2_p_mat.png" style="width: 350px;"/>
---
#### Edge-wise Significant Map
<img src="images/edgewise_p_vals.png" style="width: 600px;"/>
---
#### Node-wise Significant Map
<img src="images/nodewise_p_vals.png" style="width: 750px;"/>
---
### Bag of Features
- choose m features and compute them per node or graph
- how do i choose m? how do i choose which features (hint: arbitrary)?
- how many features are possible given a graph with n nodes (hint: many)?
- does these features characterize the brain (hint: no)?
- can we make causal claims using these features (hint: no)?
- least well known of the approaches
---
### Distribution of Features, n=10
<img src="images/j1c-all-graphs-hexbin.png" style="height: 500px;"/>
---
### Condition on "close" to base graph
<img src="images/j1c_hexbin_31_base.png" style="height: 500px;"/>
.footnote[(edges=31, threshold=3, n=200k)]
---
### Bag of Parameters
- build a statistical parametric model of brain network
- does it treat edges independently (hint: no)?
- do we have ways of choosing model and model complexity (hint: kind of)?
- do these models characterize the brain (hint: yup!)?
- can we make causal claims (hint: kind of)?
---
## What is a Code?
A code is a system of (potentially stochastic) rules that translate from one representation of information into another.
.pull-left[
Examples:
- Morse: one-to-one
- genetic: deterministic
- neural: stochastic
]
.pull-right[
<img src="https://upload.wikimedia.org/wikipedia/commons/b/b5/International_Morse_Code.svg" style="height: 400px;"/>
]
---
## Statistical Coding
- Random variables: X, Y
- Distributions: X ~ P, Y ~ P
- Conditionals: P[X | Y], P[Y | X]
Formally, codes are conditional distributions.
---
## Connectal Coding Model
Random variables of interest include:
- P: phenotypes
- C: connectomes
- G: genome
- E: environment
---
## Abstract Connectome Codes
- Pr[C | G]: prob of connectome, given a genome
- Pr[P | C]: prob of phenotype, given a connectome
- Pr[P | C, G, E]: probability of phenotype given connectome, genome, and environment
---
## .k[Statistical Models of Connectomes]
---
### Independent & Identical Edges
Erdos-Renyi (ER): akin to assuming a neuron's spike rate is Poisson with a fixed rate.
- edges are binary
- all edges independent
- all edges sampled from identical distribution
- $\Rightarrow$ only 1 parameter: prob of an edge
Notes
- directed vs. undirected
- loopy vs. no loops
- Simplest random graph model
- lacks sufficient complexity/descriptive power for most questions
---
### Independent & Identical Edges
.r[Weighted] Erdos-Renyi: akin to Poisson model using a bigger bin width.
- edges can take .r[any value]
- edges are independent
- edges are sampled from identical distribution
- $\Rightarrow$ can still only be 1 parameter: expected weight of an edge
Notes
- directed vs. undirected
- loopy vs. no loops
- simplest .r[weighted] random graph model
- lacks sufficient complexity/descriptive power for most questions
---
### Independent & Identical Edge
.r[Zero-Inflated] Weighted Erdos-Renyi: akin to assuming a bursty neuron, modeling both probability of burst and expected number of spikes in each burst
- edges can take any value
- edges are independent
- edges are sampled from identical distribution
- .r[2 parameters]: prob of edge, and expected weight of edge.
Notes
- directed vs. undirected
- loopy vs. no loops
- simplest sparse weighted random graph model
- can provide useful/interesting description of a connectome
---
### IIE Models of Connectomes
<br>
<img src="images/independent_edge_connectome_estimates.png" style="width: 800px;"/>
---
### Independent Edge Model
- edges are binary
- edges are independent
- edges are sampled from .r[differnt] distribuions
- .r[n*n parameters]: prob of edge between each pair.
- P[ A(i,j) ] = p(i,j)
Notes
- same generalizations as above apply here as well
- n*n paramers is much larger than 1,
- still ignores structure
- can't fit without lots of samples or further assumptions/restrictions
---
## Categorical Conditionally Independent Edge Models
Stochastic Block Model (SBM): akin to assuming a neuron's are in different states, which determine Poisson rate.
- edges are binary
- edges are .r[conditionally] independent
- each node has a class assignment
- P[ A(i,j) ] = B(class i, class j)
Notes
- directed vs. undirected
- loopy vs. no loops
- simplest >2 parameter model
---
## Connectome SBMs
<img src="images/fig_sbm.png" style="width: 800px;"/>
---
## Generalized SBMs
Weighted Stochastic Block Model (SBM)
- edges are .r[weighted]
- edges are conditionally independent
- each node has a class assignment
- P[ A(i,j) ] = B(class i, class j) is expected weight of connection
Notes
- directed vs. undirected
- loopy vs. no loops
---
## Generalized SBMs
Zero-Inflated Weighted Stochastic Block Model (SBM)
- edges are weighted
- edges are conditionally independent
- each node has a class assignment
- P[ A(i,j) ] = is defined by a matrix of probabilities of connection, and a matrix of expected weights
Notes
- directed vs. undirected
- loopy vs. no loops
---
## Continuous Conditionally Independent Edge Models
Random Dot Product Graphs (RDPG): akin to latent state models in population coding
- edges are binary
- edges are conditionally independent
- each node has a .r[latent position in d-dimensions]
- P[ A(i,j) ] = f(latent position i, latent position j)
- for example, P[ A(i,j) ] is the product of latent positions
Notes
- directed vs. undirected
- no loops is ickier
- generalizes previous models
---
## Connectome RDPGs
<img src="images/fig_ase.png" style="width: 750px;"/>
---
## Generalized RDPG
- Weighted RDPG: edges have weights
- Zero-Inflated Weighted RDPG: edges have probabilities and expected weights
---
## Latent Structure Models
- Special case of RDPG, where latent positions are organized into .r[structures]
- Examples
- each node class has a distribution of latent positions, eg, Gaussian
- latent positions are hierarchical, eg, multiscale atlas
- repeated motif, eg, cortical columns
- latent positions are curved
---
## Drosophila Mushroom Bodies
<img src="images/Fig15-new.png" style="width: 750px;"/>
---
## Population Graph Models
- Mixture of RDPG
- Joint Heterogeneous RDPG
<!-- <img src="images/rerf_perf.png" style="width: 800px;"/> -->
<!-- <img src="images/Fig4_benchmark_ranks.png" style="height: 600px;"/> -->
---
## .k[Discussion]
---
## Summary and Next Steps
- Connectomes are the mechanistic link:
.center[.r[genotype --> phenotype]]
- Extend ideas from coding theory to support these analyses
- Connectomes, genetic and phenotypic data are available
---
### Acknowledgements
<div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div>
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div>
<div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div>
<div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div>
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div>
<div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div>
<div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div>
<div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div>
<div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div>
<div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div>
<div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div>
<div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div>
<div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div>
<div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div>
<div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div>
<div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div>
<div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div>
<div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div>
<div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div>
<div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div>
<div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div><span style="font-size:200%; color:red;">♥, 🦁, 👪, 🌎, 🌌</span>
<img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/>
<img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/>
---
class:center
<img src="images/lion_cartoon2.jpg" style="position:absolute; top:0px; left:0px; height:100%;"/>
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script type="text/javascript">
var options = {};
var slideshow = remark.create(options)
</script>
</body>
</html>