-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathneuroAI_talk.html
858 lines (576 loc) · 23.4 KB
/
neuroAI_talk.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
<!DOCTYPE html>
<html>
<head>
<title>Learning</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
###Lifelong Learning and Beyond
<br>
<center>
![:scale 45%](images/neurodata_blue.png)
</center>
Joshua T. Vogelstein ([[email protected]](mailto:[email protected])) |
<!-- Jayanta Dey, Ali Geisa, Hayden Helm, Ronak Mehta, Will LeVine, -->
<!-- Carey E. Priebe<br> -->
[Johns Hopkins University](https://www.jhu.edu/)
---
### What is lifelong learning?
- What is .ye[learning]?
- What is .ye[lifelong learning]?
- What is .ye[beyond]?
---
class:middle
# What is learning?
---
### What is learning (informally)?
--
<br>
"The acquisition of knowledge or skills through experience, study, or by being taught."
-- Google, 2020
--
"A computer .ye[program] is set to learn from an .ye[experience] E with respect to some .ye[task] T and some .ye[performance measure] P if its performance on T as measured by P .ye[improves] with experience E."
-- Tom Mitchell, 1997
--
".ye[$f$] learns from .ye[data] $\mathbf{D}_n$ w.r.t. .ye[tasks] $s$ when its .ye[performance] at $s$ improves due to $\mathbf{D}_n$."
-- jovo, 2020
---
### What is learning (formally)?
<img src="images/Vapnik71b.png" style="width:400px;"/>
<img src="images/Valiant84.png" style="width:400px;"/>
<img src="images/Mitchell97a.png" style="width:400px;"/>
---
### Impedance mismatch between informal and formal
- Informal
- intuitively pleasing
- not formalized / operationalized
- Formal
- formalized / operationalized
- makes very strong implicit assumptions that are never appropriate
- only considers one task and one dataset
- training and testing distributions assumed to be the same
---
### Our Goal
We desire a formal learning theory framework that:
1. formalizes our intuitive understanding of what is learning
2. includes many different kinds of learning scenarios
3. enables rich theory to provide insight
4. guides practice to improve current AI/ML
---
### Out-Of-Distribution Learning Theory
- We formalize OOD learning theory
- The key insight is decoupling the training data distribution from the test data distribution
<!-- the evaluation distribution from training data distributions-->
<!-- ![:scale 100%](images/learning-schematics.png) -->
---
### Classical ML Task Setup
- X: observations
- Y: actions/labels
- S: setting (fixed in classical ML)
- t: indexes samples
![:scale 75%](images/classical-task-setup.png)
---
### Classical ML Task
Minimize error (subject to constraints)
![:scale 100%](images/classical-task-goal.png)
---
### OOD Task
Minimize OOD error (subject to constraints)
![:scale 100%](images/ood-task-goal.png)
Note:
- S is assumed to be sampled from some distribution over settings
- train and test distributions are not necessarily the same
- this makes $#*% harder
---
### OK, What is Learning Now?
We introduce .ye[learning efficiency]:
- $ \mathbf{D}^\emptyset $ is the knowledge prior to acquiring data.
- $ \mathbf{D}^1 $ is some training data
- $f$ is the learner
$$ \text{LE}_f^s(\mathbf{D}^\emptyset, \mathbf{D}^1) = \frac{\mathcal{E}_f^s(\mathbf{D}^\emptyset)}{\mathcal{E}_f^s(\mathbf{D}^1)} $$
<br>
- $f$ learned wrt task $s$ from data $\mathbf{D}^1$ if $ \text{LE} > 1 $, or $\log \text{LE} > 0$.
---
### Revisiting our goals
We desire a formal learning theory framework that:
- [X] formalizes our intuitive understanding of what is learning
- [ ] includes many different kinds of learning scenarios
- [ ] enables rich theory to provide insight
- [ ] guides practice to improve current AI/ML
---
### Transfer Learning
- One task and multiple data sets.
- $ \mathbf{D}^1 $ is the task data.
- $ \mathbf{D} $ is all of the data
- Measure if OOD data helped performance over just task data
$$ \text{LE}_f^s(\mathbf{D}^1, \mathbf{D}) = \frac{\mathcal{E}_f^s(\mathbf{D}^1)}{\mathcal{E}_f^s(\mathbf{D})} $$
<br>
$f$ transfer learned wrt task $s$ using $\mathbf{D} \backslash \mathbf{D}^1$ if $\log \text{LE}_f^s > 0 $.
---
### Multitask Learning
- Multiple tasks and multiple data sets.
- $ \mathbf{D}^s$ is the data for task $s$.
- $ \mathbf{D} $ is all of the data.
- Measure transfer learning for each task,
$$ \text{LE}_f^s(\mathbf{D}^s, \mathbf{D}) = \frac{\mathcal{E}_f^s(\mathbf{D}^s)}{\mathcal{E}_f^s(\mathbf{D})} $$
- $f$ transfer learned for task $s$ if $ \log \text{LE}_f^s > 0 $.
- $f$ multitask learned if weighted average of log learning efficiencies is positive.
- multitask learning is just transfer learning across multiple tasks
---
### Lifelong Learning
- Similar to multitask learning
- Sequential rather than batch
- Require computational complexity constraints on hypothesis and learner spaces, $ o(n) $ space and/or $ o(n^2) $ time as upperbounds.
- Everything is streaming: data, queries, actions, error, and tasks. Anything about task can change over time.
---
### Special cases
Each of the previous definitions are all special cases of $LE^s(\mathbf{D}^A, \mathbf{D}^B, f)$, for specific choices of $\mathbf{D}^A$ and $\mathbf{D}^B$
- Learning: $\mathbf{D}^A=\mathbf{D}\_0$ and $\mathbf{D}^B=\mathbf{D}\_n$.
- Transfer learning: $\mathbf{D}^A=\mathbf{D}^1$ and $\mathbf{D}^B=\mathbf{D}\_n$.
- Multitask learning: for each $t$, $\mathbf{D}^A=\mathbf{D}^s$ and $\mathbf{D}^B=\mathbf{D}\_n$.
- Forward learning: $\mathbf{D}^A=\mathbf{D}^s$ and $\mathbf{D}^B=\mathbf{D}^{< t}$.
- Backward learning: $\mathbf{D}^A=\mathbf{D}^{< t}$ and $\mathbf{D}^B=\mathbf{D}\_n$.
Conjecture: All learning metrics we care about are functions of learning efficiency for a specific $\mathbf{D}^A$ and $\mathbf{D}^B$.
---
### Many different learning scenarios
![:scale 100%](images/learning-table.png)
---
### Revisiting our goals
We desire a formal learning theory framework that:
- [X] formalizes our intuitive understanding of what is learning
- [X] includes many different kinds of learning scenarios
- [ ] enables rich theory to provide insight
- [ ] guides practice to improve current AI/ML
---
### Proving novel properties of OOD learning
![:scale 100%](images/weak-ood-learnability.png)
basically, using non-task data to improve performance at all
![:scale 100%](images/strong-ood-learnability.png)
basically, using non-task data to perform arbitrarily well
---
### Weak OOD Learner Theorem
Classical theory:
- Weak learning: can do better than chance on some task with sufficient data
- Strong learning: can do arbitrarily close to optimal on some task with sufficient data
- Weak Learner Theorem: if a problem is weakly learnable, it is also strongly learnable
OOD learning theory
- Training distribution is uncoupled from evaluation distribution
---
### More data is inadequate for LL
Theorem 1: With *only* out-of-distribution data, there exists some problems that are weakly, but not strongly, learnable.
- This implies that OOD learning is different *in kind* from in-distribution learning.
- Lifelong learning is a special case of OOD learning
- Getting .ye[more] data is *not* guaranteed to improve performance arbitrarily in LL, we need .ye[better] data
---
### Learning efficiency is a fundamental notion of learning
Theorem 2: Weak OOD learnability implies transfer learnability (i.e., learning efficiency > 1). That is, if one can weakly learn, one can also transfer learn, but not necessarily vice versa.
- This implies that transfer learnability is a fundamental property of learning problems
- In other words, inability to transfer is equivalent to inability to learn at all.
---
### What have we accomplished?
- Showed inadequacy of classical ML framework for OOD learning
- Created a new unifying framework adequate for describing OOD learning
- Proved theorems and results in this new framework
---
### Revisiting our goals
We desire a formal learning theory framework that:
- [X] formalizes our intuitive understanding of what is learning
- [X] includes many different kinds of learning scenarios
- [X] enables rich theory to provide insight
- [ ] guides practice to improve current AI/ML
---
class:middle
# What is lifelong learning?
---
### Defining/Quantifying Learning & Forgetting
<!-- The above two definitions enable one to assess .ye[whether] an agent $f$ has learned, but not .ye[how much] it learned. -->
![:scale 100%](images/learning-efficiency.png)
Using non-task data to improve performance over what it could achieve using only task data
Key is measuring improvement in performance rather than raw accuracy
---
### What is forward learning?
- Let $n\_t$ be the last occurence of task $t$ in $\mathbf{D}\_n$
- Let $\mathbf{D}\_n^{< t} = \lbrace S\_1, S\_2, \ldots, S\_{n_t} \rbrace$
- .ye[Forward] learning efficiency is the improvement on task $t$ resulting from all data .ye[preceding] task $t$
$$ FLE^s\_{\mathbf{n}}(f) := \frac{\mathcal{E}_f^s(\mathbf{D}^{t}\_n)}{\mathcal{E}_f^s(\mathbf{D}^{< t}\_n)} $$
<br>
$f$ .ye[forward learns] if $FLE_{\mathbf{n}}(f) > 1$.
---
### What is backward learning?
.ye[Backward] learning efficiency is the improvement on task $t$ resulting from all data .ye[after] task $t$
$$ BLE^s\_{\mathbf{n}}(f) := \frac{\mathcal{E}_f^s(\mathbf{D}^{< t}\_n)}{\mathcal{E}_f^s(\mathbf{D}\_n)} $$
<br>
$f$ .ye[backward learns] if $BLE_{\mathbf{n}}(f) > 1$.
---
### Learning efficiency factorizes
$$LE^s\_{\mathbf{n}}(f) := FLE^s\_{\mathbf{n}}(f) \times BLE^s\_{\mathbf{n}}(f) $$
$$ \frac{\mathcal{E}_f^s(\mathbf{D}^{t}\_n)}{\mathcal{E}_f^s(\mathbf{D}\_n)} = \frac{\mathcal{E}_f^s(\mathbf{D}^{t}\_n)}{\mathcal{E}_f^s(\mathbf{D}^{< t}\_n)} \times
\frac{\mathcal{E}_f^s(\mathbf{D}^{< t}\_n)}{\mathcal{E}_f^s(\mathbf{D}\_n)} $$
<br>
---
### Lifelong learning is hard: catastrophic forgetting
![:scale 100%](images/catastrophic.png)
---
### 30 years later...
![:scale 100%](images/synaptic_intelligence.png)
<br>
And the struggle to not forget continues...
---
### Our claim
A lifelong learning agent should improve on
<ol style="list-style-type: lower-alpha; padding-bottom: 0;">
<li style="margin-left:2em">past tasks , i.e., $BLE_{\mathbf{n}}(f) > 1$</li>
<li style="margin-left:2em">current tasks, i.e., $LE^s_{\mathbf{n}}(f) > 1$ </li>
<li style="margin-left:2em">future or yet unseen tasks, i.e., $FLE_{\mathbf{n}}(f) > 1$</li>
</ol>
---
### Our approach: ensembling representations
![:scale 100%](images/learning_schema_new.png)
---
### What is lifelong cheating?
- Store every sample you've ever seen
- Every time we are faced with a new data, just update everything in batch mode
- Now just run your favorite multitask $f$
- Doing so consumes $\mathcal{O}(n^2)$ resources because $ \sum_{i =1}^n i \approx n^2$
- So, to differentiate lifelong learning from multitask learning requires a particularly efficient algorithm
- $f$ must consume less than quadratic resources as a function of $n$, $f \in o(n^2)$
---
### A computational taxonomy
| Par. | → | ← | capacity | space | time | Examples
| :---: | :---: | :---: | :---:| :---: | :---: |
| par | - | - | 1 | T | nT | EWC
| par | - | - | 1 | 1 | n | O-EWC, SI, LwF
| par | + | - | 1 | n | nT | Total Replay
| semipar | + | 0 | T | T<sup>2 | nT | ProgNN
| semipar | + | - | T | T | n | DF-CNN
| semipar | + | + | T | T + n | n | ODIN
| nonpar | + | + | n | n | n | ODIF
---
### Omnidirectional Algorithms can Transfer Between XOR and XNOR
![:scale 100%](images/xor_xnor_exp.png)
---
## CIFAR 10x10
.pull-left[
- *CIFAR 100* is a popular image classification dataset with 100 classes of images.
- 500 training images and 100 testing images per class.
- All images are 32x32 color images.
- CIFAR 10x10 breaks the 100-class task problem into 10 tasks, each with 10-class.
]
.pull-right[
<img src="images/l2m_18mo/cifar-10.png" style="position:absolute; left:450px; width:400px;"/>
]
---
### Omnidirectional Algorithms Show Forward Transfer
CIFAR 10x10
<!-- - *CIFAR 100* is a popular image classification dataset with 100 classes of images. -->
<!-- - CIFAR 10x10 breaks the 100-class task problem into 10 tasks, each with 10-class. -->
![:scale 100%](images/cifar_exp_fte.png)
---
### Omnidirectional Algorithms Uniquely Show Backward Transfer for Each Task
![:scale 100%](images/cifar_exp_bte.png)
---
### Revisiting our goals
We desire a formal learning theory framework that:
- [X] formalizes our intuitive understanding of what is learning
- [X] includes many different kinds of learning scenarios
- [X] enables rich theory to provide insight
- [X] guides practice to improve current AI/ML
---
### Future Directions/ Transitions
- omnidirctional algorithm code continues to improve [http://proglearn.neurodata.io/](http://proglearn.neurodata.io/)
- streaming forest for streaming lifelong learning setup [https://sdtf.neurodata.io](https://sdtf.neurodata.io)
![:scale 80%](images/streaming_forest.png)
---
### Kernel Density Networks/Forests generate well calibrated posteriors
- [https://github.com/neurodata/kdg](https://github.com/neurodata/kdg)
- KDG on Guassian XOR simulation data
![:scale 100%](images/kdn_kdf.png)
<br>
---
### Deep Networks are the worst model of the mind
<img src=
"images/nn_rf_jong.gif"
alt="jong"
width = "700"
height= "250">
---
### Acknowledgements
<!-- <div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div> -->
<div class="small-container">
<img src="faces/yummy.jpg"/>
<div class="centered">yummy</div>
</div>
<div class="small-container">
<img src="faces/lion.jpg"/>
<div class="centered">lion</div>
</div>
<div class="small-container">
<img src="faces/violet.jpg"/>
<div class="centered">baby girl</div>
</div>
<div class="small-container">
<img src="faces/family.jpg"/>
<div class="centered">family</div>
</div>
<div class="small-container">
<img src="faces/earth.jpg"/>
<div class="centered">earth</div>
</div>
<div class="small-container">
<img src="faces/milkyway.jpg"/>
<div class="centered">milkyway</div>
</div>
##### JHU
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<!-- <div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bruce_rosen.jpg"/>
<div class="centered">Bruce Rosen</div>
</div>
<div class="small-container">
<img src="faces/kent.jpg"/>
<div class="centered">Kent Kiehl</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div> -->
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<!-- <div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div> -->
<div class="small-container">
<img src="faces/meghana.png"/>
<div class="centered">Meghana Madhya</div>
</div>
<!-- <div class="small-container">
<img src="faces/percy.png"/>
<div class="centered">Percy Li</div>
</div>
-->
<div class="small-container">
<img src="faces/hayden.png"/>
<div class="centered">Hayden Helm</div>
</div>
<div class="small-container">
<img src="faces/rguo.jpg"/>
<div class="centered">Richard Gou</div>
</div>
<div class="small-container">
<img src="faces/ronak.jpg"/>
<div class="centered">Ronak Mehta</div>
</div>
<div class="small-container">
<img src="faces/jayanta.jpg"/>
<div class="centered">Jayanta Dey</div>
</div>
<div class="small-container">
<img src="faces/will.jpg"/>
<div class="centered">Will LeVine</div>
</div>
##### Microsoft Research
<div class="small-container">
<img src="faces/chwh-180x180.jpg"/>
<div class="centered">Chris White</div>
</div>
<div class="small-container">
<img src="faces/weiwei.jpg"/>
<div class="centered">Weiwei Yang</div>
</div>
<div class="small-container">
<img src="faces/jolarso150px.png"/>
<div class="centered">Jonathan Larson</div>
</div>
<div class="small-container">
<img src="faces/brtower-180x180.jpg"/>
<div class="centered">Bryan Tower</div>
</div>
##### DARPA L2M
<!-- Hava, Ben, Robert, Jennifer, Ted. -->
{[BME](https://www.bme.jhu.edu/),[CIS](http://cis.jhu.edu/), [ICM](https://icm.jhu.edu/), [KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/) | [neurodata](https://neurodata.io)
<br>
[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | [@neuro_data](https://twitter.com/neuro_data)
</div>
<!-- <img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/> -->
<!-- <img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/> -->
---
background-image: url(images/l_and_v.jpeg)
.footnote[Questions?]
---
class: middle
# .center[Appendix]
---
.small[
### Publications
1. A. Geisa et al. [Towards a theory of out-of-distribution learning](https://arxiv.org/abs/2109.14501), arXiv, 2021.
1. J. T. Vogelstein et al. [Omnidirectional Transfer for Quasilinear Lifelong Learning](https://arxiv.org/abs/2004.12908), arXiv, 2021.
1. Xu, Haoyin, et al. [Streaming Decision Trees and Forests](https://arxiv.org/abs/2110.08483), arXiv, 2021.
1. C. E. Priebe et al. [Modern Machine Learning: Partition and Vote](https://doi.org/10.1101/2020.04.29.068460), 2020.
1. R Guo, et al. [Estimating Information-Theoretic Quantities with Uncertainty Forests](https://arxiv.org/abs/1907.00325). arXiv, 2019.
1. R. Perry, et al. [Manifold Forests: Closing the Gap on Neural Networks](https://openreview.net/forum?id=B1xewR4KvH). arXiv, 2019.
1. C. Shen and J. T. Vogelstein. [Decision Forests Induce Characteristic Kernels](https://arxiv.org/abs/1812.00029). arXiv, 2019.
1. M. Madhya, et al. [Geodesic Learning via Unsupervised Decision Forests](https://arxiv.org/abs/1907.02844). arXiv, 2019.
1. M. Madhya, et al. [PACSET (Packed Serialized Trees): Reducing Inference Latency for Tree Ensemble Deployment](https://arxiv.org/abs/2011.05383). arXiv, 2020.
### Conferences
1. J.T. Vogelstein et al. A biological implementation of lifelong learning in the pursuit of artificial general intelligence. NAISys, 2020.
2. B. Pedigo et al. A quantitative comparison of a complete connectome to artificial intelligence architectures. NAISys, 2020.
]
---
### Biological learning is on top
![:scale 100%](images/learning-table.png)
---
### Spoken Digit dataset
.pull-left[
- *Spoken Digit* contains recording from 6 different speakers.
- Each digit has 50 recordings (3000 total recordings).
- For each recording spectrogram was extracted using using Hanning windows of duration 16 ms with an overlap of 4 ms.
- The spectrograms were resized down to 28×28.
]
.pull-right[
<img src="images/spectrogram.png" style="position:absolute; left:500px; width:400px;"/>
]
---
### Omnidirectional Algorithms on Spoken Digit Task
![:scale 105%](images/spoken_digit.png)
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<!-- <script src="remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
remark.macros.scale = function (percentage) {
var url = this;
return '<img src="' + url + '" style="width: ' + percentage + '" />';
};
// var slideshow = remark.create({
// Set the slideshow display ratio
// Default: '4:3'
// Alternatives: '16:9', ...
// {
// ratio: '16:9',
// });
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>