-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_prediciton_dl.py
206 lines (171 loc) · 7.66 KB
/
learning_prediciton_dl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
TODO
Script to learn weights offline using nengo_dl.
The purpose is to perform batch training and also to optimize the input weights
using back-prop
Hint:
# inputs
x, y, and z are name of input nodes
data = {x: np.random.uniform(-1, 1, size=(1024, 1, 1)),
y: np.random.uniform(-1, 1, size=(1024, 1, 1)),
z: np.random.uniform(-1, 1, size=(1024, 1, 1))}
Each input should have shape (number of training examples, number of simulation timesteps, input dimensionality)
f_p is probe connected to the output node
# targets
data[f_p] = target_func(data[x], data[y], data[z])
https://www.nengo.ai/nengo-dl/v2.1.0/examples/nef-init.html
'''
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
#mpl.use("Qt5Agg")
from tqdm import tqdm
from pathlib import Path
import datetime
from models.predictive_model_dl import PredictiveModelLMU_dl
from plot_predictions import plot_state_prediction, plot_error_curve
from utils.data import load_datasets, get_scaling_factor, scale_datasets
import pickle
import time
import nengo_dl
# setup some parameters
# TODO these should come from an argparser or config file!
model_name = "LMU_model"
experiment_name = "training"
data_dir = "data/Train/"
results_dir = "results/"
load_state = ""
action_vars = ["Q"]
state_vars = ["angle_sin", "angle_cos", "angleD", "position", "positionD"]
bound = 0.19 # if the cart ever leaves these bounds, the data is ignored
epochs = 1 # number or epochs for training
sample_freq = 50 # cartpole data is recorded at ~50Hz
dt = 0.001 # nengo time step
learning_rate = 5e-5 # lr
t_delays = [0.02, 0.06, 0.1] # how far to predict the future (initial guess)
neurons_per_dim = 50 # number of neurons representing each dimension
seed = 4 # to get reproducible neuron properties across runs
lmu_theta = 0.1 # duration of the LMU delay
lmu_q = 5 # number of factorizations per dim in LMU
max_samples = -1 # just reduce training set for quick debugging
plot_prediction_every = 100 # how often to plot a prediction curve during learning
# crating a unique folder to save the weights in
folder_name = (
str(datetime.datetime.now().date())
+ "_"
+ str(datetime.datetime.now().time()).replace(":", ".")
)
run_dir = Path(results_dir, experiment_name, model_name, folder_name)
run_dir.mkdir(parents=True, exist_ok=True)
# load training data from disk
training_data = load_datasets(data_dir, bound=bound)
print(f"training data contains {len(training_data)} files")
# retreive the scaling factor
scales = get_scaling_factor(training_data, state_vars)
print("detected scaling factors:")
for k, v in scales.items():
print(f"{k:15s} : {v:3.3f}")
# scale datasets to [-1,1]
training_data = scale_datasets(training_data, scales)
# init weights from file or empty
if load_state:
print("loading model state from", load_state)
with open(load_state, "rb") as f:
model_state = pickle.load(f)
model = PredictiveModelLMU_dl(**model_state)
else:
print("initializing weights as zeros")
weights = None # let the model initialize its own weights
# init the model object
model = PredictiveModelLMU_dl(
seed=seed, neurons_per_dim=neurons_per_dim, sample_freq=sample_freq,
lmu_theta=lmu_theta, lmu_q=lmu_q, radius=1.5, dt=dt,
t_delays=t_delays, learning_rate=learning_rate, action_vars=action_vars,
state_vars=state_vars, weights=weights, scales=scales
)
# get the model weights
weights = model.get_weights()
# record the training error over time
all_prediction_errors = [[] for _ in t_delays]
all_baseline_errors = [[] for _ in t_delays]
all_extra_errors = [[] for _ in t_delays]
for e in range(epochs):
print("\nstarting epoch", e + 1)
start_time = time.time()
# record the training error for the epoch
epoch_mean_prediction_errors = [[] for _ in t_delays]
epoch_mean_baseline_errors = [[] for _ in t_delays]
epoch_mean_extra_errors = [[] for _ in t_delays]
# loop over the training dataset
with tqdm(total=len(training_data[:max_samples])) as t:
for i, df in enumerate(training_data[:max_samples]):
# reset the model neurons
model.reset_sim()
# pass the training data
action_df = df[["time"] + action_vars]
state_df = df[["time"] + state_vars]
model.set_inputs(action_df, state_df)
# set the correct model weights
model.set_weights(weights)
# run the simulation
recordings = model.process_files()
# collect the output data
actions = model.sim.data[recordings["actions"]]
states = model.sim.data[recordings["states"]]
weights = model.get_weights()
# TODO: THE WEIGHTS ARE LOOKING WEIRD, WHY?
# print(weights)
for j, t_d in enumerate(t_delays):
# retrieve network output based on delay
predicted_states = model.sim.data[recordings["predictions"][f"{j}"]["states_pred"]]
prediction_errors = model.sim.data[recordings["predictions"][f"{j}"]["errors"]]
# report the prediction error (next state - predicted next state)
mean_prediction_error = np.mean(np.abs(prediction_errors))
epoch_mean_prediction_errors[j].append(mean_prediction_error)
all_prediction_errors[j].append(mean_prediction_error)
delta_t = int(t_d / dt) # number of network simulated timesteps for lookahead
# report the difference between current state and next state
mean_baseline_error = np.mean(np.abs(states[:-delta_t] - states[delta_t:]))
epoch_mean_baseline_errors[j].append(mean_baseline_error)
all_baseline_errors[j].append(mean_baseline_error)
# report the difference between prediction and linear extrapolation
p_s_extrapolation = 2 * states[delta_t:-delta_t] - states[:-2*delta_t]
mean_extrapolation_error = np.mean(np.abs(p_s_extrapolation - states[2*delta_t:]))
epoch_mean_extra_errors[j].append(mean_extrapolation_error)
all_extra_errors[j].append(mean_extrapolation_error)
# plot the prediction
if (i % plot_prediction_every) == 0:
fig = plot_state_prediction(
states,
predicted_states,
p_extra=p_s_extrapolation,
delta_t=delta_t,
state_vars=state_vars,
save_path=Path(run_dir, f"prediction_e{e}_i{i}_td{delta_t}_training.svg"),
show=True
)
plt.close()
# update the loading bar
t.set_postfix(loss="{:05.4f}".format(mean_prediction_error))
t.update()
runtime = time.time() - start_time
print(f"epoch processing time: {int(runtime//60)}m {runtime%60:.3f}s")
for j, t_d in enumerate(t_delays):
# save the weights
model.save_state_dict(Path(run_dir, "model_state.pkl"))
# report epoch errors
print()
print(f"prediction delay = {t_d}")
print()
print(f"epoch mean prediction error : {np.mean(epoch_mean_prediction_errors[j])}")
print(f"epoch mean baseline error : {np.mean(epoch_mean_baseline_errors[j])}")
print(f"epoch mean extrapolation error: {np.mean(epoch_mean_extra_errors[j])}")
fig = plot_error_curve(
all_prediction_errors[j],
all_baseline_errors[j],
all_extra_errors[j],
t_delay=t_d,
save_path=Path(run_dir, f"error_curve_td{t_d}.svg"),
show=True
)
plt.close()