-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
44 lines (37 loc) · 1.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(QNetwork, self).__init__()
# A range of model sizes have been tested from 2 layers to 4 with sizes varying from 32 to 128 across the
# tests. Overall, there was negliable difference between the various models.
# We have chosen to use a simple model with 2 hidden layers
fc1_units=64
fc2_units=128
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc1.weight.data.normal_(0, 0.1) # initialization
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc2.weight.data.normal_(0, 0.1) # initialization
#self.fc3 = nn.Linear(fc2_units, fc3_units)
#self.fc3.weight.data.normal_(0, 0.1) # initialization
#self.fc4 = nn.Linear(fc3_units, fc4_units)
#self.fc4.weight.data.normal_(0, 0.1) # initialization
self.out = nn.Linear(fc2_units, action_size)
self.out.weight.data.normal_(0, 0.1) # initialization
def forward(self, state):
"""Build a network that maps state -> action values."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
#x = F.relu(self.fc3(x))
#x = F.relu(self.fc4(x))
return self.out(x)