From b379cb212f17e5c0fd8003f9bb2b5c4b8da32077 Mon Sep 17 00:00:00 2001 From: Mat Doucet Date: Thu, 9 Jan 2025 08:51:00 -0500 Subject: [PATCH] Update event_processing.md --- docs/user/event_processing.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/docs/user/event_processing.md b/docs/user/event_processing.md index 910837f..5fa13c9 100644 --- a/docs/user/event_processing.md +++ b/docs/user/event_processing.md @@ -17,10 +17,12 @@ the following for the paralyzing case: $$ C_{par} = -{\cal Re}W_0(-R\tau/\Delta_{TOF}) \Delta_{TOF}/R $$ + where $R$ is the number of triggers per accelerator pulse within a time-of-flight bin $\Delta_{TOF}$. The dead time for the current BL4B detector is $\tau=4.2$ $\mu s$. In the equation avove, ${\cal Re}W_0$ referes to the principal branch of the Lambert W function. The following is used for the non-paralyzing case: + $$ C_{non-par} = 1/(1-R\tau/\Delta_{TOF}) $$ @@ -157,4 +159,4 @@ With this new weigth, we can compute reflectivity directly from the $S(q_z)$ equ $$ R(q_z) = \frac{1}{Q} \sum_{i \in q_z \pm \Delta{q_z}/2} w_i / \phi(\lambda_i) q_{z,i} / \lambda_i -$$ \ No newline at end of file +$$